Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Retrogenix Points to New Drug Target for Malaria in Children

Published: Thursday, June 06, 2013
Last Updated: Thursday, June 06, 2013
Bookmark and Share
The discovery reported this week in Nature.

Retrogenix has announced that its unique human cell microarray technology played a pivotal role in determining the molecular interaction that triggers severe malaria in children.

The discovery, reported this week in Nature, could lead to new therapies to combat a form of the disease that kills around one million children per year.

Though researchers have known for over a century that red blood cells infected with malaria parasites can kill their host by sticking to the sides of blood vessels, the binding mechanism associated with the most lethal forms of malaria was unknown.

Now, Retrogenix’s technology has enabled researchers from the University of Copenhagen, together with Seattle Biomedical Research Institute, the National Institute for Medical Research, Tanzania, and the University of Oxford, to show that the parasite binds a protein in blood vessel walls called endothelial protein C receptor (EPCR), which is involved with regulating blood coagulation and the inflammatory response.

Malaria parasites grow in red blood cells and stick to the endothelial lining of blood vessels through a large family of parasite proteins called PfEMP1.

This way, the parasite avoids being carried with the blood to the spleen, where it would otherwise be destroyed. One of the most aggressive forms of malaria parasite binds in brain blood vessels, causing a disease called cerebral malaria.

In 2012, three groups of researchers, including the teams at the University of Copenhagen and Seattle Biomedical Research Institute, showed that a specific type of PfEMP1 protein was responsible for cerebral binding and other severe forms of malaria infection. However, until now, the receptor to which it binds remained unknown.

“The first big challenge was to generate a full-length PfEMP1 protein in the laboratory,” says Assistant Professor Louise Turner at the University of Copenhagen. “Next, we utilized the technology developed by Retrogenix to examine which of over 2,500 human proteins this PfEMP1 protein could bind to.”

Of the 2,500 proteins screened, a receptor called endothelial protein C (EPCR) was the single solid hit. “A lot of work then went into confirming this binding in the lab and not least to show that parasites from non-immune children with severe malaria symptoms in Tanzania often bound EPCR,” she continues.

“It was a true eureka moment,” says Assistant Professor Thomas Lavstsen. “Under normal conditions, ECPR plays a crucial role in regulating blood clotting, inflammation, cell death and the permeability of blood vessels. The discovery that parasites bind and interfere with this receptor´s normal function may help us explain why severe symptoms of malaria develop."

Malaria parasites disrupt the important functions of blood vessels
Severe malaria symptoms such as cerebral malaria often result in minor blood clots in the brain. One of our body´s responses to malaria infection is to produce inflammatory cytokines, but too much inflammation is dangerous, describes Professor Joseph Smith, from the Seattle Biomedical Research Institute.

“ECPR and a factor in the blood called protein C act as a ‘brake’ on blood coagulation and endothelial cell inflammation and also enhance the viability and integrity of blood vessels, but when the malaria parasites use PfEMP1 to bind EPCR, they may interfere with the normal function of EPCR, and thus the binding can be the catalyst for the violent reaction,” he explains.

“Investigating this question is the next step to learn about how malaria parasites cause disease.”

Towards an intervention
The discovery that malaria parasites bind EPCR may advance vaccine and drug interventions to treat severe malaria.

Dr. Matthew Higgins from the University of Oxford explains: “Now that we know the pair of proteins involved, we can begin zooming further in to reveal the molecular details of how malaria parasites grab onto the sides of blood vessels. We want to know exactly which bits of the parasite protein are needed to bind to the receptor in the blood vessel wall. Then, we can aim to design vaccines or drugs to prevent this binding.”

Vaccine research will also benefit immediately from the discovery, since scientists can already now test the effectiveness of different vaccine candidates at preventing PfEMP1 from binding ECPR.

“Over the last decade, we have come to appreciate that specific PfEMP1 proteins are associated with different severe forms of malaria,” explains Professor Thor Theander at the University of Copenhagen. “Together with the National Institute for Medical Research, Tanzania, we are in the process of preparing phase I trials for a vaccine to prevent parasite binding in the placenta and malaria during pregnancy,” he explains.

This new discovery holds the potential for also developing a vaccine to reduce the heavy burden malaria disease inflicts on children. “It will be a long haul, but with these results, we can get started right away,” he says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!