Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Membrane Remodeling: Where Yoga Meets Cell Biology

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
NIH-funded study reveals protein, fatty molecules and cellular energy work together during endocytosis.

Cells ingest proteins and engulf bacteria by a gymnastic, shape-shifting process called endocytosis. Researchers at the National Institutes of Health revealed how a key protein, dynamin, drives the action.

Endocytosis lets cells absorb nutrients, import growth factors, prevent infections and accomplish many other vital tasks. Yet, despite decades of research, scientists don't fully understand this membrane remodeling process.

New research reveals, on the real-life scale of nanometers, how individual molecules work together during a single act of endocytosis.

"We've discovered new details about a basic process used in all sorts of ways by every cell in the body," said co-author Joshua Zimmerberg, M.D., Ph.D., head of the Program in Physical Biology at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), where the research was conducted. "It's the culmination of a 30-year journey."

The research was led by Vadim Frolov, Ph.D., a former postdoctoral fellow in Dr. Zimmerberg's lab. It appears in a Science paper co-authored by an international team of researchers in the United States, Spain, Russia and India.

In addition to funding Dr. Zimmerberg, NIH also supported the work through a grant from the National Institute of General Medical Sciences (NIGMS) to co-author Sandra Schmid, Ph.D. at the University of Texas Southwestern Medical Center in Dallas. Dr. Schmid is an expert on dynamin.

Scientists have known for years that dynamin plays the major role in endocytosis. After other molecules known as coat proteins pinch the cell's membrane to form an inward-puckering sac, dynamin wraps, python-like, around the neck of the sac and squeezes it tightly.

A jolt of energy from a molecule called GTP severs the neck, releasing a free-floating bubble, called a vesicle, inside the cell, and sealing the cell's outer membrane shut. All the while, neither the cell nor the vesicle leak any of their contents.

Drs. Zimmerberg, Schmid and colleagues discovered how the cell overcomes a seemingly insurmountable energy barrier to accomplish this feat. It's not a matter of brute force, as previously suspected, but something much more zen-like-molecular cooperation.

Neck severing starts when dynamin dips slightly into the pliable cell membrane. Lipids (oily molecules) in the membrane move aside, shifting their tails to accommodate the protein. This molecular crowding stresses the membrane, further constricting the neck of the developing vesicle.

Then GTP finishes the job. But not, as you might expect, with a fatal tug of the dynamin noose. Rather the opposite: Like a yoga instructor, GTP encourages the membrane to relax, despite its extreme stress. In the middle of this state of relaxation, the vesicle suddenly pinches off.

In trying to understand this counterintuitive move, the researchers speculate that GTP melts the inside of dynamin a bit, turning the protein into a flexible scaffold that stabilizes the membrane while the lipids rearrange themselves.

"We see no other way to lower the energy barrier to remodeling without having any leaks," states Dr. Frolov, who formulated the idea.

The researchers also found that, without access to GTP, dynamin will keep growing, twisting three or four times around the neck of the sac. When GTP is present (as is the case in living organisms), it only lets dynamin coil once or twice before it snaps off the vesicle.

All of this information helps scientists better understand a process critical to life.

Genetic defects in endocytosis-and the reverse process, exocytosis-are linked to a host of human diseases, including muscular dystrophy, Alzheimer's disease, leukemia and many others. In addition, some parasites and other pathogens can hijack endocytosis, commandeering the process to enter and infect human cells.

Dr. Zimmerberg is bringing his basic research findings to the clinic. He is studying changes in muscle cell membranes in people who have an adult-onset form of muscular dystrophy. In the disease, the membrane around muscle cells weakens and tears.

Eventually, cells with damaged membranes die, leaking a number of enzymes into the bloodstream. Dr. Zimmerberg hopes to identify changes in blood chemistry that shed light on the disease process and point to possible new treatments. The study soon will begin recruiting patients as volunteers.

This research was supported in part by the intramural program of the NICHD and by NIGMS grant GM42455.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Disordered Protein 'Shape Shifts' to Avoid Crowding
Study suggests disordered protein escapes from the cell membrane when it runs out of space.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
"Pac-man Protein" May Aid the Fight Against Cancer
Scientists at the University of Sheffield have identified a protein which causes cells to eat their dying neighbours, helping to prevent inflammation – something which is vital in the fight to stop cancer spreading.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!