Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

DNA Sequencing Reveals Mucosal Melanoma's Bullseye

Published: Wednesday, June 12, 2013
Last Updated: Wednesday, June 12, 2013
Bookmark and Share
Scientists have found a molecular 'bullseye' for a rare form of melanoma, opening up opportunities for new targeted treatment.

DNA sequencing carried out at Cancer Research UK’s Paterson Institute for Cancer Research at the University of Manchester has revealed that the genetic fingerprint of mucosal melanoma is completely different from that of its more common counterpart – cutaneous or melanoma skin cancer.

The study has also revealed for the first time the genetic faults against which new treatments could be targeted for mucosal melanoma patients.

Unlike cutaneous melanoma, for which UV is a well-known risk-factor, little is known about the causes of mucosal melanoma. This means there are no treatments that can target the cancer, leading to starkly contrasting outlooks in these two forms of the disease. Five year survival rates for mucosal melanoma are around 40 per cent, compared to more than 90 per cent for cutaneous. There are around 120-130 cases of mucosal melanoma diagnosed each year in the UK.

Professor Richard Marais, director of the Paterson Institute for Cancer Research and lead author of the research, said: “We’ve seen a completely different gene profile in mucosal melanoma. There’s no classic UV signature, which reinforces our thoughts that this type of cancer isn’t linked to the sun and sunbeds and suggests that these types of melanoma start in different ways.

“We can start to look at these newly discovered genetic faults and develop desperately needed targeted treatments for this type of melanoma. It’s exactly this type of vital research that we and other scientists will be doing at the new Manchester Cancer Research Centre – bringing together a wide range of expertise to revolutionise cancer treatment.”

This research was funded by The Catalyst Club, a pioneering venture that's raising £10 million towards personalised cancer treatment. The club is made up of philanthropists who have invested in a range of projects that will help to bring forward the day when all cancers are cured.

Professor Nic Jones, Cancer Research UK’s chief scientist, said: “In effect, these two sub-types of melanoma are more like different diseases that just happen to affect the same cells. Cutaneous melanoma is strongly linked to UV exposure, number of moles, family history and ethnicity, while mucosal melanoma doesn’t seem to be linked to these factors. But it’s usually more aggressive and more likely to spread to other parts of the body than cutaneous melanoma.

“Research like this is helping us to better understand how this disease works and is the first step towards developing more effective treatments. By recognising the differences between sub-types of melanoma, we will be able to tailor treatment for patients so they have the best chance of beating the disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biggest Database for Cancer Drug Discovery Goes 3D
The world’s largest database for cancer drug discovery has been revolutionised by adding 3D structures of faulty proteins and maps of cancer’s communication networks, according to Cancer Research UK-funded research published in Nucleic Acid Research.
Monday, January 04, 2016
Spreading Cancer Cells Must Change Their Environment to Grow
Spreading cancer cells arriving in a new part of the body must be able to change their new environment to continue to grow, according to a study by Cancer Research UK scientists at the Francis Crick Institute.
Monday, December 07, 2015
New Companies Join Cancer Research UK Consortium
Three new biomarker companies have been selected to work with the Early Diagnosis Consortium, a collaboration between Cancer Research UK, its commercial arm, Cancer Research Technology and Abcodia.
Thursday, December 11, 2014
Scientists Find New Drug Target for Hard-to-Treat Leukaemia
Cancer Research UK scientists have discovered a promising new approach to treat a type of myeloid leukaemia – a cancer with limited treatment options and relatively poor survival.
Friday, March 30, 2012
Cancer Research UK Launches Medicine Manufacturing Hub for Life-Saving Research
New £18 million drug manufacturing facility will make experimental medicine and antibodies to target cancer cells.
Tuesday, August 03, 2010
Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Grant to Fund Million Peaks Project
The European Research Council (ERC) has awarded a prestigious Advanced Grant to Prof. Peter Schoenmakers, Prof. Albert Polman and Prof. Huib Bakker, all three of whom work at the University of Amsterdam (UvA).
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!