Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Coax Brain to Regenerate Cells Lost in Huntington’s Disease

Published: Tuesday, June 18, 2013
Last Updated: Tuesday, June 18, 2013
Bookmark and Share
The study appears in the journal Cell Stem Cell.

Researchers have been able to mobilize the brain’s native stem cells to replenish a type of neuron lost in Huntington’s disease.

In the study, which appears in the journal Cell Stem Cell, the scientists were able to both trigger the production of new neurons in mice with the disease and show that the new cells successfully integrated into the brain’s existing neural networks, dramatically extending the survival of the treated mice.

“This study demonstrates the feasibility of a completely new concept to treat Huntington’s disease, by recruiting the brain’s endogenous neural stem cells to regenerate cells lost to the disease,” said University of Rochester Medical Center (URMC) neurologist Steve Goldman, M.D., Ph.D., co-director of Rochester’s Center for Translational Neuromedicine.

Huntington’s disease is an inherited neurodegenerative disease characterized by the loss of a specific cell type called the medium spiny neuron, a cell that is critical to motor control.

The disease, which affects some 30,000 people in the U.S., results in involuntary movements, problems with coordination, and, ultimately, in cognitive decline and depression. There is currently no way to slow or modify this fatal disease.

For Goldman, the idea behind his strategy to treat the disease emerged from his decades-long study of neural plasticity in canaries.

Songbirds like canaries have intrigued biologists because of their ability - unique in the animal kingdom - to lay down new neurons in the adult brain.

This process, called adult neurogenesis, was first discovered by Goldman and Fernando Nottebohm of the Rockefeller University in the early 1980s, when the two realized that when learning new songs new neurons were added to regions of the bird’s brain responsible for vocal control.

“Our work with canaries essentially provided us with the information we needed to understand how to add new neurons to adult brain tissue,” said Goldman. “Once we mastered how this happened in birds, we set about how to replicate the process in the adult mammalian brain.”

Humans already possess the ability to create new neurons. Goldman’s lab demonstrated in the 1990s that a font of neuronal precursor cells exist in the lining of the ventricles, structures found in the core of the human brain.

In early development, these cells are actively producing neurons. However, shortly after birth the neural stem cells stop generating neurons and instead produce glia, a family of support cells that pervade the central nervous system.

Some parts of the human brain continue to produce neurons into adulthood, the most prominent example is the hippocampus where memories are formed and stored.

But in the striatum, the region of the brain that is devastated by Huntington’s disease, this capability is “switched off” in adulthood.

Goldman and his team spent the past decade attempting to unravel the precise chemical signaling responsible for instructing neural stem cells when to create neurons and when to create glia cells.

One of the most critical clues came directly from the earlier research with canaries. In the part of the bird’s brain were new songs are acquired and neurons added, the scientists observed the regulated expression of a protein called brain derived neurotrophic factor, or BDNF. When the production of this protein is triggered, the local neural stem cells are instructed to produce neurons.

At the same time, the scientists also realized that they had to simultaneously suppress the bias of these stem cells to produce glia. They found that when BDNF was combined with another molecule called noggin - a protein that inhibits the chemical pathway that dictates the creation of glial cells - they could successfully switch the stem cell’s molecular machinery over to the production of neurons.

The next challenge was how to deliver these two proteins - BDNF and noggin - precisely and in a sustained fashion to the area of the brain involved in Huntington’s disease. To do so, they partnered with scientists at the University of Iowa to modify a viral gene therapeutic, called an adeno-associated virus, to deliver the necessary molecular instructions to the neural stem cells.

The virus infected the target cells in the brains of mice with Huntington’s disease and triggered the sustained over-expression of both BDNF and noggin. This, in turn, activated the neighboring neural stem cells which began to produce medium spiny motor neurons.

The new neurons were continuously generated and migrated to the striatum, the region of the brain impacted by Huntington’s disease, where they then integrated into the existing neuronal networks.

The researchers were able to significantly extend the survival of the treated mice, in some cases doubling their life expectancy. The researchers also devised a way to tag the new neurons and observed that the cells extended fibers to distant targets within the brain and establish electrical communication.

After having established the ability to generate new replacement neurons in mouse models of Huntington’s disease, the researchers also demonstrated that they could replicate this technique in the brains of normal squirrel monkeys, a step that brings the research much closer to tests in humans.

“The sustained delivery of BDNF and noggin into the adult brain was clearly associated with both increased neurogenesis and delayed disease progression,” said Goldman. “We believe that our data suggest the feasibility of this process as a viable therapeutic strategy for Huntington’s disease.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Extra Protein Gives Naked Mole Rats More Power To Stop Cancer
A protein newly found in the naked mole rat may help explain its unique ability to ward off cancer.
Thursday, February 05, 2015
Scientific News
Resurrected Proteins Double Their Natural Activity
Researchers demonstrate method for reviving denatured proteins.
Scientists Decode Structure at Root of Muscular Disease
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Researchers Discover A New Mechanism of Proteins to Block HIV
Certain IFITM proteins block and inhibit cell-to-cell transmission of HIV.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Study Adds to Evidence That Viruses Are Alive
A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report.
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos