Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

SAW Instruments Enhances Protein Interaction Analysis with the sam®X Acoustic Biosensor

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
A robust platform for label-free biomolecular assays.

SAW Instruments is continuing to advance acoustic wave biosensor technology with the sam®X platform. Based on SAW’s Surface Acoustic Wave technology, the biosensors measure changes in mass and viscoelasticity at the chip surface based on changes in the high frequency acoustic oscillations running across the chip surface.

This innovative approach is complementary to other biophysical techniques, such as SPR and QCM for measuring protein interactions, and can also be used for samples and applications that are difficult to analyze by these other methods, thus providing additional information and insights.

The sam®X platform is ideally suited to the study of native membrane proteins and protein complexes such as the 7TM G-Protein Coupled Receptors (GPCRs), either as membrane fragments or within liposome or vesicle particles.

Such complexes can be very challenging to analyze by traditional biosensor platforms. For these therapeutically relevant targets, sam®X technology represents a new potential tool for drug discovery programs.

Closely coupled to this, many drug companies are also interested in looking at the separate conformational data from the sam®X platform (i.e. measuring the change in the acoustic wave amplitude) when using small molecule candidates against protein targets or vesicles. This can provide very valuable information on compounds whose binding induces structural changes in their targets.

In terms of practical workflow improvement and benefits, the eight channels of the dual-chip sam®X system provide more sensors for a higher throughput, and perhaps even more importantly, provide flexible fluidic channel routing which allows different samples or reagents to be delivered to discrete channels or combinations of channels on the chip.

Different proteins can also be immobilized at separate sensor position while the chip is on-line, enabling loading of the surface to full capacity, and allowing for a degree of quantification, which vastly improves data quality and assists interpretation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

SAW Instruments Expands Presence in the US
Company has further expanded its presence in the USA by forming a new subsidiary, SAW Instruments USA, LLC, and recruiting a full time Field Application Scientist based in Boston, MA.
Monday, March 19, 2012
Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!