Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

SAW Instruments Enhances Protein Interaction Analysis with the sam®X Acoustic Biosensor

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
A robust platform for label-free biomolecular assays.

SAW Instruments is continuing to advance acoustic wave biosensor technology with the sam®X platform. Based on SAW’s Surface Acoustic Wave technology, the biosensors measure changes in mass and viscoelasticity at the chip surface based on changes in the high frequency acoustic oscillations running across the chip surface.

This innovative approach is complementary to other biophysical techniques, such as SPR and QCM for measuring protein interactions, and can also be used for samples and applications that are difficult to analyze by these other methods, thus providing additional information and insights.

The sam®X platform is ideally suited to the study of native membrane proteins and protein complexes such as the 7TM G-Protein Coupled Receptors (GPCRs), either as membrane fragments or within liposome or vesicle particles.

Such complexes can be very challenging to analyze by traditional biosensor platforms. For these therapeutically relevant targets, sam®X technology represents a new potential tool for drug discovery programs.

Closely coupled to this, many drug companies are also interested in looking at the separate conformational data from the sam®X platform (i.e. measuring the change in the acoustic wave amplitude) when using small molecule candidates against protein targets or vesicles. This can provide very valuable information on compounds whose binding induces structural changes in their targets.

In terms of practical workflow improvement and benefits, the eight channels of the dual-chip sam®X system provide more sensors for a higher throughput, and perhaps even more importantly, provide flexible fluidic channel routing which allows different samples or reagents to be delivered to discrete channels or combinations of channels on the chip.

Different proteins can also be immobilized at separate sensor position while the chip is on-line, enabling loading of the surface to full capacity, and allowing for a degree of quantification, which vastly improves data quality and assists interpretation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

SAW Instruments Expands Presence in the US
Company has further expanded its presence in the USA by forming a new subsidiary, SAW Instruments USA, LLC, and recruiting a full time Field Application Scientist based in Boston, MA.
Monday, March 19, 2012
Scientific News
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!