Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Psychiatric Disorders Linked to a Protein Involved in the Formation of Long-Term Memories

Published: Tuesday, June 25, 2013
Last Updated: Tuesday, June 25, 2013
Bookmark and Share
Researchers have discovered a pathway by which the brain controls a molecule critical to forming long-term memories and connected with bipolar disorder and schizophrenia.

The discovery was made by a team of scientists led by Alexei Morozov, an assistant professor at the Virginia Tech Carilion Research Institute.

The mechanism – a protein called Rap1 – controls L-type calcium channels, which participate in the formation of long-term memories. Previous studies have also linked alterations in these ion channels to certain psychiatric disorders. The discovery of the channels’ regulation by Rap1 could help scientists understand the physiological genesis of bipolar disorder and schizophrenia.

“People with genetic mutations affecting L-type calcium channels have higher rates of bipolar disorder and schizophrenia,” said Morozov. “This suggests that there might be a relationship between the activation of L-type calcium channels and these psychiatric disorders. Understanding how these ion channels are controlled is the first step to determining how their functioning or malfunctioning affects mental health.”

A single neuron in the brain can have thousands of synapses, each of which can grow, strengthen, weaken, and change structurally in response to learning new information. Electric signals traveling from neuron to neuron jump across these synapses through chemical neurotransmitters. The release of these chemicals is caused by the flow of electrically charged atoms through a particular subset of ion channels known as voltage-gated calcium channels.

Previous studies have shown that blocking these ion channels inhibits the formation of long-term memories. Although it was known that L-type calcium channels are activated in response to learning, how they are controlled was a mystery.

In the experiment, Morozov and colleagues knocked out the gene responsible for coding the enzyme Rap1, which he suspected played a role in activating L-type calcium channels. The researchers then used live imaging techniques to monitor the release of neurotransmitters and electron microscopy to visualize L-type channels at synapses. They discovered that, without Rap1, the L-type calcium channels were more active and more abundant at synapses all the time, increasing the release of neurotransmitters. The results showed that Rap1 is responsible for suppressing L-type calcium channels, allowing them to activate only at the proper moments, possibly during long-term memory formation.

“Our next step is to determine whether this new signaling pathway is altered in cases of mental disease,” said Morozov. “If so, it could help us gain a better understanding of the molecular underpinnings of channel-related psychiatric disorders, such as bipolar disorder and schizophrenia. Such knowledge would go a long way toward developing new therapeutic methods.”

The discovery appeared in The Journal of Neuroscience in the study “Rap1 Signaling Prevents L-Type Calcium Channel-Dependent Neurotransmitter Release,” by Jaichandar Subramanian, now a research fellow at the Picower Institute for Learning and Memory at the Massachusetts Institute of Technology; Louis Dye, a staff scientist at the Microscopy and Imaging Core of the National Institute of Child Health and Human Development; and Morozov, who is also an assistant professor in Virginia Tech’s School of Biomedical Engineering and Sciences.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer Markers May be Present Early During Human Development
Researchers at the Virginia Bioinformatics Institute have uncovered a link between the genomes of cells originating in the neural crest and development of tumors — a discovery that could lead to new ways to diagnose and treat cancer.
Friday, August 07, 2015
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Wednesday, July 29, 2015
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!