Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biochemical Role of Crucial TonB Protein in Bacterial Iron Transport and Pathogenesis

Published: Wednesday, July 03, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
A study has discovered the role of a protein in bacteria that cause a wide variety of diseases, including typhoid fever, plague, meningitis and dysentery.

The results may lead to new and improved antibiotics for humans and animals.

Phillip E. Klebba, professor and head of the department of biochemistry and molecular biophysics, made the findings with two colleagues in the department: Lorne D. Jordan, doctoral candidate, Manhattan, and Salete M. Newton, research professor. The collaboration included other biophysicists at the University of Oklahoma and Purdue University. Their study, "Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane," appears in the journal Proceedings of the National Academy of Sciences USA, or PNAS.

The research focuses on the central role of iron in biochemistry. Both animals and bacteria require iron for biological processes like energy generation and DNA, Klebba said. The iron acquisition systems of bacteria, however, contribute to infectious diseases.

"Iron is the object of a microbiological war in the human body," Klebba said. "Host proteins defend cells and tissues by sequestering the metal, and successful pathogens overcome this barrier and capture the iron. But the iron transport mechanisms of pathogenic organisms are not well understood."

The membrane protein TonB plays an indispensable role in the uptake of iron by Gram-negative bacteria -- a classification of bacteria that is more resistant to antibiotics because of a nearly impenetrable cell wall. Gram-negative bacteria can cause diseases such as Escherichia coli, Salmonella typhi, Yersinia pestis, Vibrio cholera, Brucella abortus, Neisseria meningitidis cause many diseases and clinical conditions; they all transport iron by the same mechanism that depends on the actions of TonB.

Despite decades of research, the biochemical role of TonB in Gram-negative bacteria was a scientific mystery, Klebba said. He and his colleagues found that the cellular electrochemical forces put TonB in a spinning motion that provides the energy and physical mechanism to enable iron uptake into the cell.

"In this sense TonB acts like an electric motor that constantly rotates in response to the cellular energy flow," Klebba said. "TonB is one of nature's smallest and oldest electrical devices."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!