Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biochemical Role of Crucial TonB Protein in Bacterial Iron Transport and Pathogenesis

Published: Wednesday, July 03, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
A study has discovered the role of a protein in bacteria that cause a wide variety of diseases, including typhoid fever, plague, meningitis and dysentery.

The results may lead to new and improved antibiotics for humans and animals.

Phillip E. Klebba, professor and head of the department of biochemistry and molecular biophysics, made the findings with two colleagues in the department: Lorne D. Jordan, doctoral candidate, Manhattan, and Salete M. Newton, research professor. The collaboration included other biophysicists at the University of Oklahoma and Purdue University. Their study, "Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane," appears in the journal Proceedings of the National Academy of Sciences USA, or PNAS.

The research focuses on the central role of iron in biochemistry. Both animals and bacteria require iron for biological processes like energy generation and DNA, Klebba said. The iron acquisition systems of bacteria, however, contribute to infectious diseases.

"Iron is the object of a microbiological war in the human body," Klebba said. "Host proteins defend cells and tissues by sequestering the metal, and successful pathogens overcome this barrier and capture the iron. But the iron transport mechanisms of pathogenic organisms are not well understood."

The membrane protein TonB plays an indispensable role in the uptake of iron by Gram-negative bacteria -- a classification of bacteria that is more resistant to antibiotics because of a nearly impenetrable cell wall. Gram-negative bacteria can cause diseases such as Escherichia coli, Salmonella typhi, Yersinia pestis, Vibrio cholera, Brucella abortus, Neisseria meningitidis cause many diseases and clinical conditions; they all transport iron by the same mechanism that depends on the actions of TonB.

Despite decades of research, the biochemical role of TonB in Gram-negative bacteria was a scientific mystery, Klebba said. He and his colleagues found that the cellular electrochemical forces put TonB in a spinning motion that provides the energy and physical mechanism to enable iron uptake into the cell.

"In this sense TonB acts like an electric motor that constantly rotates in response to the cellular energy flow," Klebba said. "TonB is one of nature's smallest and oldest electrical devices."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Liquid Biopsy Predicts Colon Cancer Recurrence
Scientists have used a genetic test that spots bits of cancer-related DNA circulating in the blood to accurately predict the likelihood of the disease’s return in some — but not all — of a small group of patients with early-stage colon cancer.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!