Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Altered Protein Shapes May Explain Differences in Some Brain Diseases

Published: Thursday, July 04, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
NIH-funded study finds that various strains of alpha-synuclein have diverse effects in neurons.

It only takes one bad apple to spoil the bunch, and the same may be true of certain proteins in the brain. Studies have suggested that just one rogue protein (in this case, a protein that is misfolded or shaped the wrong way) can act as a seed, leading to the misfolding of nearby proteins.

According to an NIH-funded study, various forms of these seeds - originating from the same protein - may lead to different patterns of misfolding that result in neurological disorders with unique sets of symptoms.

"This study has important implications for Parkinson's disease and other neurodegenerative disorders," said National Institute of Neurological Disorders and Stroke (NINDS) Director Story Landis, Ph.D.

Landis continued, "We know that among patients with Parkinson's disease, there are variations in the way that the disorder affects the brains. This exciting new research provides a potential explanation for why those differences occur."

An example of such a protein is alpha-synuclein, which can accumulate in brain cells, causing synucleinopathies, multiple system atrophy, Parkinson's disease, Parkinson's disease with dementia (PDD), and dementia with Lewy bodies (DLB).

In addition, misfolded proteins other than alpha-synuclein sometimes aggregate, or accumulate, in the same brains. For example, tau protein collects into aggregates called tangles, which are the hallmark of Alzheimer's disease and are often found in PDD and DLB brains.

Findings from this study raise the possibility that different structural shapes, or strains, of alpha-synuclein may contribute to the co-occurrence of synuclein and tau accumulations in PDD or DLB.

In the new study, published in Cell, Jing L. Guo, Ph.D., and her colleagues from the University of Pennsylvania Perelman School of Medicine, Philadelphia, wanted to see if different preparations of synthetic alpha-synuclein fibrils would behave differently in neurons that were in a petri dish as well as in mouse brains.

They discovered two strains of alpha-synuclein with distinct seeding activity in cultured neurons: while one strain (strain A) resulted in accumulation of alpha-synuclein alone, the other strain (strain B) resulted in accumulations of both alpha-synuclein and tau.

The researchers also injected strain A or strain B into the brains of mice engineered to make large amounts of human tau, and then monitored the formation of alpha-synuclein and tau aggregates at various time points.

Mice that received injections of synuclein strain B showed more accumulation of tau - earlier and across more brain regions - compared to mice that received strain A.

The researchers also examined the brains of five patients who had PDD, some of whom also had Alzheimer's. In this small sample, there was evidence of two different structural forms of alpha-synuclein, one in PDD brains and a distinctly different one in PDD/Alzheimer's brains, supporting the existence of disease-specific strains of the protein in human diseases.

"We are just starting to do work with human tissues," said Virginia M.Y. Lee, Ph.D., senior author of the study. "We are planning to look at the brains of patients who had Parkinson's disease, PDD, or DLB to see if there are differences in the distribution of alpha-synuclein strains."

Although the two strains used in this study were created in test tubes, the authors noted that in human brains, where the environment is much more complicated, the chances of forming additional disease-related alpha-synuclein strains may be greater.

"These different strains not only can convert normal alpha-synuclein into pathological alpha-synuclein within one cell, they also can morph into new strains as they pass from cell to cell, acquiring the ability to serve as a template to damage both normal alpha-synuclein and other proteins," said Dr. Lee. "So certain strains, but not all strains, can act as templates to influence the development of other pathologies, such as tau tangles."

She commented, "We are just beginning to understand some of these strains and there may be many others. We hope to find a way to identify strains that are relevant to human disease."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientists Uncover Nuclear Process in the Brain that May Affect Disease
NIH-funded study highlights the possible role of glial brain cells in neurological disorders.
Tuesday, August 18, 2015
PINK1 Protein Crucial for Removing Broken-Down Energy Reactors
NIH study suggests potential new pathway to target for treating ALS and other diseases.
Thursday, August 13, 2015
Scientific News
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!