Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify New Source of Powerful Immunity Protein

Published: Thursday, July 11, 2013
Last Updated: Thursday, July 11, 2013
Bookmark and Share
New cellular source for IFN-? that keeps viruses from replicating and stimulates the immune system.

Researchers at UT Southwestern Medical Center report the identification of a new cellular source for an important disease-fighting protein used in the body’s earliest response to infection.

The protein interferon-gamma (IFN-γ) keeps viruses from replicating and stimulates the immune system to produce other disease-fighting agents.

Neutrophils, the newly identified cellular source of the protein, are the major component of the pus that forms around injured tissue.

The researchers also report that the neutrophils appear to produce IFN-γ through a new cellular pathway independent of Toll-like receptors (TLRs): the body’s early warning system for invasion by pathogens.

This finding indicates that mammals might possess a second early-alert system - the sort of built-in redundancy engineers would envy, said Dr. Felix Yarovinsky, assistant professor of immunology and senior author of the study published online in the Proceedings of the National Academy of Sciences in June.

“We believe our mouse study provides strong evidence that neutrophils, white blood cells created in the bone marrow, produce significant amounts of IFN-γ in response to disease,” Dr. Yarovinsky said. “The finding of a new and essential cellular source for IFN-γ challenges a long-held belief in the field and is significant because neutrophils are the most common kind of white blood cell.”

Two pathogens were used in this study: the parasite Toxoplasma gondii - which can cause brain damage in humans and other mammals that have compromised immune systems - and a type of bacterium that causes gastroenteritis, Salmonella typhimurium.

Innate immunity is the body’s first line of defense against pathogens, including those that it has never before encountered.

Adaptive immunity is the secondary system that battles pathogens to which the body has previously been exposed and to which it has developed antibodies.

Textbooks list natural killer (NK) cells and T cells as the body’s significant sources of IFN-γ. Although large numbers of neutrophils have long been observed to congregate at the site of a new infection, they were commonly thought to be first responders or foot soldiers rather than generals in the battle against disease, as this study indicates they are, Dr. Yarovinsky explained.

About 20 years ago, there were clinical reports in humans and animals suggesting that neutrophils might produce IFN-γ, but the idea was largely ignored by the scientific community until the last decade, he said.

Since then, studies at UT Southwestern and elsewhere have found that mice lacking NK and T cells, and therefore expected to be unable to produce IFN-γ, somehow continued to withstand infections better than mice genetically unable to make any IFN-γ.

These observations suggested the possibility of an unknown source of the protein, he explained.

In a series of experiments, the UT Southwestern researchers identified neutrophils as the major source of IFN-γ in mice lacking NK and T cells. “Based on what we know about neutrophils, their large numbers and rapid deployment to the site of infection should provide an important means of very early, robust, and rapid elimination of disease-causing agents,” the researchers wrote. Although neutrophil-derived IFN-γ alone is insufficient to achieve complete host protection, the protein significantly extended the survival of mice in this study, Dr. Yarovinsky said.

In related news, the Burroughs Wellcome Fund in June announced that Dr. Yarovinsky had been selected for its 2013 Investigators in the Pathogenesis of Infectious Disease Award to further investigate mechanisms of host defense against various infectious diseases mediated by IFN-γ produced by neutrophils.

The award will provide $500,000 over five years to pursue this line of research.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Find New Mechanism That Controls Immune Responses
The findings appear online in the journal Science.
Friday, February 13, 2015
Protein Variant may Boost Cardiovascular Risk by Hindering Blood Vessel Repair
Researchers have found that apoE3 helps repair the lining of blood vessels.
Friday, September 19, 2014
UTSW Cancer Researchers Identify Irreversible Inhibitor for KRAS Gene Mutation
Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers.
Tuesday, July 29, 2014
UT Southwestern Researcher Selected for ASBMB Merck Award
Award recognizes Dr. Zhijian Chen’s outstanding contributions to research in biochemistry and molecular biology.
Friday, July 18, 2014
Cellular Force That Drives Allergy and Asthma Can be Blocked by Interferon
Type I interferons block the development of allergy- and asthma-driving Th2 cells.
Friday, June 20, 2014
Proteins Causing Daytime Sleepiness Also Tied to Bone Formation
Orexin proteins provide target for osteoporosis, UT Southwestern researchers find.
Saturday, June 14, 2014
New Mechanism Explains How Cancer Cells Spread
A protein critical to the spread of deadly cancer cells has been identified and how it works determined.
Wednesday, May 28, 2014
Stem Cell Study Opens Door to Undiscovered World of Biology
Discovery published in Nature measures protein production.
Tuesday, March 11, 2014
Dr. Beth Levine Receives 2014 Stanley J. Korsmeyer Award
Award recognizes Dr. Levine’s fundamental contributions to the understanding of autophagy.
Friday, February 07, 2014
Two UT Southwestern Scientists Earn Spots on Top 20 List
Dr. Eric Olson and Dr. Philip Thomas earn spots in translational research.
Saturday, February 01, 2014
Study Identifies Potential Therapeutic Target for Incurable, Rare Type of Soft-Tissue Cancer
UT Southwestern scientists study published online in Cell Reports.
Friday, December 27, 2013
Overexpressed Protein A Culprit in Certain Thyroid Cancers
Study by UT Southwestern researchers suggests a link between nervous system and cancer.
Tuesday, October 15, 2013
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!