Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Quality of Waking Hours Key to Falling Sleep

Published: Monday, July 15, 2013
Last Updated: Monday, July 15, 2013
Bookmark and Share
UT Southwestern researchers identifies two proteins never before linked to alertness and sleep-wake balance.

The quality of wakefulness affects how quickly a mammal falls asleep, UT Southwestern Medical Center researchers report in a study that identifies two proteins never before linked to alertness and sleep-wake balance.

“This study supports the idea that subjective sleepiness is influenced by the quality of experiences right before bedtime. Are you reluctantly awake or excited to be awake?” said Dr. Masashi Yanagisawa, professor of molecular genetics and a Howard Hughes Medical Institute investigator at UT Southwestern. He is principal author of the study published online in May in the Proceedings of the National Academy of Sciences.

Co-author Dr. Robert Greene, UT Southwestern professor of psychiatry and a physician at the Dallas VA Medical Center, said the study is unique in showing that the need for sleep (called sleep homeostasis) can be separated from wakefulness both behaviorally and biochemically, meaning the two processes can now be studied individually.

“Two of the great mysteries in neuroscience are why do we sleep and what is sleep’s function? Separating sleep need from wakefulness and identifying two different proteins involved in these steps represents a fundamental advance,” he said.

If borne out by further research, this study could lead to new ways of assessing and possibly treating sleep disorders, perhaps by focusing more attention on the hours before bedtime because the quality of wakefulness has a profound effect on sleep, Dr. Yanagisawa said.

The experiment featured three groups of mice with virtually identical genes. The control group slept and woke at will and followed the usual mouse pattern of sleeping during the day and being awake at night.

The two test groups were treated the same and had the same amount of sleep delay - six hours - but they were kept awake in different ways, said lead author Dr. Ayako Suzuki, a postdoctoral researcher who works in the laboratories of both Dr. Yanagisawa and Dr. Greene.

The first test group’s sleep was delayed by a series of cage changes. Mice are intensely curious, so each cage change was followed by an hour spent vigorously exploring the new surroundings.

This behavior would roughly correspond to teenagers voluntarily delaying bedtime with a new and stimulating event like a rock concert or video game.

Researchers kept the second group awake as gently as possible, usually by waving a hand in front of the cage or tapping it lightly whenever the mice appeared to be settling down to sleep. That test group would more resemble parents reluctantly staying awake awaiting a child’s return from a concert.

Both test groups experienced the same amount of sleep deprivation, but their reactions to the different forms of alertness were striking, Dr. Yanagisawa said. In one test, the cage-changing group took longer to fall asleep than the gentle-handling group even though an analysis of their brain waves indicated equal amounts of sleep need in both test groups.

“The need to sleep is as high in the cage-changing group as in the gentle-handling group, but the cage-changers didn’t feel sleepy at all. Their time to fall asleep was nearly the same as the free-sleeping, well-rested control group,” he said.

The researchers identified two proteins that affected these responses, each linked to different aspects of sleep: phosphorylated dynamin 1 levels were linked to how long it took to fall asleep, while phosphorylated N-myc downstream regulated gene 2 protein levels tracked the amount of sleep deprivation and corresponded to the well-known brain-wave measure of sleep need, they report.

“The two situations are different biochemically, which is a novel finding,” Dr. Yanagisawa said, adding, “These proteins are completely new to sleep research and have never before been linked to sleep need and wakefulness.”

From an evolutionary perspective, an arousal mechanism that adapts to environmental stimuli is crucial because sleeping on a rigid schedule could be dangerous. “Animals, including humans, must be able to keep themselves at least temporarily alert, say during a natural disaster,” he said.

Drs. Yanagisawa and Greene are both corresponding authors on the study, and both have dual appointments at the International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan. Former Associate Professor of Internal Medicine Dr. Christopher M. Sinton, now at the University of Arizona, was also involved in the study.

The study was funded by the Japan Society for the Promotion of Science through the Funding Program for World-Leading Innovative R&D on Science and Technology; the Perot Family Foundation; and the Department of Veterans Affairs.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UTSW Finds Key Step in Brain Cell Death During Stroke
Researchers at UTSW have found novel function for old protein in work that could lead to new ways to protect brain from stroke damage.
Saturday, October 08, 2016
Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
The team of researchers grew crystals of nicotinic receptors, a breakthrough that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects.
Tuesday, October 04, 2016
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UTSW-led Study Establishes Biomarkers to Help Diagnose, Treat Psychosis
In this study, the Bipolar-Schizophrenia Network on Intermediate Phenotypes identified three neurobiologically distinct biotypes.
Saturday, December 12, 2015
Physiologists Uncover a New Code at the Heart of Biology
New “code” - the speed limit of assembly - dictate the ultimate function of a given protein.
Thursday, September 24, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Scientific News
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
IU Research Reveals Link between Molecular Mechanisms in Prostate Cancer and Ewing's sarcoma
Researchers at IU have suggested that the molecular mechanism that triggers the rare disease Ewing's sarcoma could act as a potential new direction for the treatment of more than half of patients with prostate cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Advances in Alzheimer’s Research
Researchers show how a diseased vertebrate brain can naturally react to Alzheimer’s pathology by forming more neurons.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos