Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Develop Technique that can Tell if Drugs Have Hit Their Target in the Human Body

Published: Monday, July 22, 2013
Last Updated: Monday, July 22, 2013
Bookmark and Share
The search for new drugs, including those for cancer, is set to speed up thanks to a new research technique invented by scientists at the Nanyang Technological University (NTU).

Named the “Cellular Thermal Shift Assay” (CETSA), scientists can now know for sure if a drug had reached its target protein in the body, which is a critical step in determining the effectiveness of most medicines.

Presently, scientists can only hypothesise if a drug has indeed reached its target protein, leading to expensive and prolonged drug development process. CETSA will help scientists take out much of the usual trial-and-error guesswork from the drug development equation.

This research breakthrough was recently published in Science, one of the world’s top scientific journals.

Most drugs operate by binding to one or more proteins, which ‘blocks’ the proteins’ function. Scientists around the world face two common bottlenecks: how to identify the right proteins to target and how to design drug molecules which are able to efficiently seek out and bind to these proteins.

CETSA’s inventor, Professor Pär Nordlund from NTU’s School of Biological Sciences, said their new method will not only ease the two bottlenecks, but also has important applications in monitoring a patient’s progress, for example, during cancer treatment.

“With CETSA, we can in principle determine which drug and treatment regime is most effective at targeting the proteins in the tumour in cancer patients, and monitor when resistance is developing,” says Prof Nordlund.

How CETSA works

When drugs react with target proteins in a cell, the proteins are able to withstand higher temperature before unfolding and precipitating, that is, turning solid. An example of protein precipitation is when liquid egg white (which is protein) is cooked (turning solid) at high heat.

“By heating protein samples and finding out which proteins are ‘cooked’ and which are left ‘uncooked’ due it being more heat resistant, we are able to know if the drugs had reached their target cells and if it had caused the desired binding to the proteins, blocking its functions,” added Prof Nordlund, who is also a Professor of Biophysics at the Karolinska Institutet, one of Europe's most prestigious medical universities, located in Sweden.

“With CETSA, costly and challenging drug development cycles can potentially be made more efficient, as the method can be used as a stringent control step at many phases of the process. Other methods are available for indirect measurements of drug binding but they are often less accurate, and CETSA will be a valuable tool to complement these technologies,” said the Swedish professor.

This project took Prof Nordlund’s team three years and they are now in the process of developing a prototype device. They are also in talks with pharmaceutical companies who are interested to collaborate in research.

Prof Nordlund is a leading structural biologist instrumental in establishing the laboratory of the Structural Genomics Consortium at Karolinska Institutet (Stockholm), and had received the prestigious Göran Gustafsson prize in chemistry from the Swedish Academy of Sciences in 2001.

He is also a member of the Nobel Assembly at the Karolinska Institutet and the Chemistry Class at the Swedish Academy of Science, as well as a Reviewing Editor at Science Magazine. In addition, he is the co-founder of three biotech companies Evitra Proteoma, Sprint Biosciences and Pelago Bioscience.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Cell Cargo Ships in Near Future?
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Liquid Biopsy Predicts Colon Cancer Recurrence
Scientists have used a genetic test that spots bits of cancer-related DNA circulating in the blood to accurately predict the likelihood of the disease’s return in some — but not all — of a small group of patients with early-stage colon cancer.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!