Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Newly Found CLAMP Protein Regulates Genes

Published: Tuesday, July 23, 2013
Last Updated: Tuesday, July 23, 2013
Bookmark and Share
Protein turns out to be the missing link that allows a key regulatory complex to find and operate on the lone X chromosome of male fruit flies.

Called CLAMP, the protein provides a model of how such regulatory protein complexes find their chromosome targets.

They say a good man is hard to find. Were it not for a newly discovered protein, the X chromosome of a male fruit fly could never be found by a gene-regulating complex that male flies need to develop and survive. And that case is just one example of what the new finding means. More generally, the research provides biologists with a model of how proteins that govern gene transcription find their targets on chromosomes, a process that’s essential to healthy cell function and sometimes implicated in disease.

The new protein, dubbed CLAMP by the Brown University scientists who led the discovery, is found in many species including humans. In fly embryos it turns out to be the missing link that brings together the X chromosome and the transcription complex MSL, which doubles the expression of the chromosome. That process, called dosage compensation, brings male flies up to parity with females who have two X chromosomes (in mammals, a similar process downgrades one of the female Xs to ensure parity). In fact, MSL stands for “male-specific lethal” because without it, and without CLAMP, the male flies would die.

Scientists have long puzzled over how MSL and the X chromosome came together, said Erica Larschan, assistant professor of biology in the Department of Molecular Biology, Cellular Biology and Biochemistry and corresponding author of the study published online July 15 in the journal Genes and Development. In fact, she said, they’ve lacked that understanding about many such interactions in which regulatory complexes govern the expression of genes in chromosomes.

“This is the last step of these signaling pathways that make the ultimate regulatory decision about whether you are going to turn on a gene or keep it off at a particular time,” Larschan said. “It’s exciting because this protein has never been studied before.”

In the new paper, Larschan, graduate students Marcela Soruco and Jessica Chery, and their team of collaborators describe several experiments that demonstrate how CLAMP binds to key sites on the X chromosome and then brings in MSL to those sites to do its work. They first turned up the protein in a wide sweep of the fly genome published last year. They were looking for possible missing link candidates, but hadn’t yet figured out from the more than 100 they found which ones were genuinely promising. That process took years more work.

As they began to look more closely at CLAMP, they recognized that it has seven zinc ion-tipped “fingers” for grabbing, or clamping, onto DNA. They also noticed it also has a configuration elsewhere that seemed made for binding to a large protein complex.

In their experiments, both in flies and on the lab bench, they show that CLAMP binds DNA at specific sites known to be relevant for MSL’s interaction with the X chromosome. They also showed that interfering with CLAMP prevents MSL from finding the X chromosome.

Positive feedback loop

Then they found something that amazed them. Rather than acting simply as an intermediate link, CLAMP works together with MSL to create a self-reinforcing feedback loop of activity at the X chromosome.

“That was a really big surprise,” Larschan said. “I did those experiments myself. I kept doing it again and again because I was so surprised.”

One of the more telling analyses took advantage of the sex-specificity of the MSL complex. The researchers noticed that while CLAMP would bind to the X chromosome in both male and female flies, it would only progress past a certain degree in the males. The difference is that males have MSL and females don’t.

What the researchers determined is that as a male fly embryo develops, CLAMP binds to some initial sites on the chromosome. That facilitates the assembly of MSL at the chromosome. MSL then opens up the coiled up DNA to expose more sites for CLAMP binding, which brings in more MSL.

Larschan speculates that the ability to instigate that kind positive feedback loop, perhaps in the future with a synthetic small molecule drug, could prove therapeutic in any diseases where a regulatory complex and its linking protein isn’t operating properly at a chromosome.

“You could theoretically maintain those domains if they were misregulated,” she said.

In addition to Larschan, Soruco and Chery, other Brown authors on the paper are Alexander Leydon, Arthur Sugden, Karen Goebel, Jessica Feng, and Peng Xia. Other authors are Eric Bishop, Michael Tolstorukov, and Peter Park of Harvard Medical School; and Tervor Siggers, Anastasia Vedenko, and Martha Bulyk of Brigham and Women’s Hospital and Harvard.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Proposes New Ovarian Cancer Targets
Researchers from Brown University propose that TAFs may be important suspects in the progression of ovarian cancer.
Friday, March 14, 2014
NMR Advance Brings Proteins into the Open
A key protein interaction had eluded scientists’ observation until a team of researchers cracked the case by combining data from four different techniques of NMR.
Wednesday, June 26, 2013
Magnet Sends Lab Capacity ‘Through the Roof’ at Laboratories for Molecular Medicine
As a crane lowered a powerful 3.8-ton magnet through the roof, Brown began work on deploying a powerful new tool for molecular biology research.
Tuesday, February 05, 2013
Brown Researchers Create Novel Technique to Sequence Human Genome
Physicists report in the journal Nanotechnology the first experiment to move a DNA chain through a nanopore using magnets.
Thursday, April 30, 2009
Scientific News
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Controlling Body Temperature in Response to 'Fight or Flight'
New research in The FASEB Journal suggests that blocking TRPV1 protein causes an increased release of noradrenaline, leading to an increase in core body temperatures.
Resurrected Proteins Double Their Natural Activity
Researchers demonstrate method for reviving denatured proteins.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos