Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Protein Discovered with Vast Potential for Treatment of Cancer and Other Diseases

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
In cancer research, discovering a new protein that plays a role in cancer is like finding a key and a treasure map: follow the clues and eventually there could be a big reward.

At least that’s the hope from a new study published in the journal Nature that discovered a novel protein called ceramide-1 phosphate transport protein (CPTP) – a finding that could eventually lead to the development of new drugs to treat a variety of cancers and other conditions involving inflammation and thrombosis, or blood clotting.

The identification of CPTP was the result of an international collaboration that built on prior research by co-lead author Charles Chalfant, Ph.D., Endowed Chair of Cancer Cell Signaling and member of the Cancer Cell Signaling program at Virginia Commonwealth University Massey Cancer Center as well as professor in the Department of Biochemistry and Molecular Biology at VCU School of Medicine. The team discovered that CPTP regulates levels of biologically active lipids, which are molecules such as fatty acids that often play a role in cell signaling. This study determined that CPTP’s main function is to transport ceramide-1-phosphate (C1P), a lipid that helps regulate cell growth, survival, migration and inflammation. Specifically, C1P increases the production of pro-inflammatory eicosanoids – powerful signaling molecules that contribute to chronic inflammation in diseases such as cancer, asthma, atherosclerosis and thrombosis – and the discovery of CPTP shines a light on the cellular mechanisms that contribute to these diseases.

“We may have identified the newest target for treating cancer,” says Chalfant. “Because of the important role this protein plays in a number of cellular functions, it could also have large implications for a variety of diseases like cancer that are caused by inflammation.”

With assistance from Massey’s Lipidomics Developing Shared Resource core, the researchers were able to determine the composition of the bioactive lipids regulated by CPTP. Residing in the cytosol, or the liquid within cells, the team found that CPTP regulates catabolism of C1P, a process that breaks down the molecule in order to release its energy. They also demonstrated that CPTP transports C1P to the cellular membrane where it helps synthesize eicosanoids from fatty acids in the membrane.

Confirming a decade of research from Chalfant’s laboratory, the scientists provided further proof that C1P regulates group IVA phospholipase A2, an enzyme that promotes inflammation through the production of a fatty acid known as arachidonic acid. The release of arachidonic acid via C1P activation of this enzyme was shown to trigger the production of eicosanoids. These findings help to explain the reported link between ceramide kinase, the enzyme responsible for C1P production, and poor prognosis in breast cancer patients, which further suggests that alleviation of systemic inflammation may lead to better prognosis and better treatment responses.

“Moving forward, we hope to use our knowledge of the structure of CPTP in order to find small molecules and other means that can block it,” says Chalfant. “The immediate uses of such therapeutics might be to restore clotting in trauma patients by maintaining the levels of specific eicosanoids that mediate blood clotting. However, with further research we hope to define exactly how CPTP is produced so that we can regulate its production and potentially develop new treatments for a variety of diseases.”

Chalfant collaborated on this study with co-lead author Rhoderick Brown, Ph.D., from the University of Minnesota; Dayanjan S. Wijesinghe, postdoctoral fellow in the Department of Biochemistry and Molecular Biology at VCU School of Medicine; Dhirendra Simanshu, Ph.D., from Memorial Sloan-Kettering Cancer Center; Dinshaw Patel, Ph.D., a member of the National Academy of Sciences from Memorial Sloan-Kettering Cancer Center; Xianqiong Zou, Ravi Kanth Kamlekar, Xiuhong Zhai, Shrawan Mishra and Edward Hinchcliffe, Ph.D., all from the University of Minnesota; Julian Molotkovsky from the Russian Academy of Sciences in Moscow, Russia; and Lucy Malinina from CIC bioGUNE in Derio-Bilbao, Spain.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sperm Motility Gene Linked to Height
A team of scientists believe they have identified the association between human height and a specific gene found in sperm.
Friday, May 29, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Gene Deletion Reveals Cell Secrets
Researchers have deleted 174 genes in yeast to analyse the effect of individual gene deletion.
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!