Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Protein Discovered with Vast Potential for Treatment of Cancer and Other Diseases

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
In cancer research, discovering a new protein that plays a role in cancer is like finding a key and a treasure map: follow the clues and eventually there could be a big reward.

At least that’s the hope from a new study published in the journal Nature that discovered a novel protein called ceramide-1 phosphate transport protein (CPTP) – a finding that could eventually lead to the development of new drugs to treat a variety of cancers and other conditions involving inflammation and thrombosis, or blood clotting.

The identification of CPTP was the result of an international collaboration that built on prior research by co-lead author Charles Chalfant, Ph.D., Endowed Chair of Cancer Cell Signaling and member of the Cancer Cell Signaling program at Virginia Commonwealth University Massey Cancer Center as well as professor in the Department of Biochemistry and Molecular Biology at VCU School of Medicine. The team discovered that CPTP regulates levels of biologically active lipids, which are molecules such as fatty acids that often play a role in cell signaling. This study determined that CPTP’s main function is to transport ceramide-1-phosphate (C1P), a lipid that helps regulate cell growth, survival, migration and inflammation. Specifically, C1P increases the production of pro-inflammatory eicosanoids – powerful signaling molecules that contribute to chronic inflammation in diseases such as cancer, asthma, atherosclerosis and thrombosis – and the discovery of CPTP shines a light on the cellular mechanisms that contribute to these diseases.

“We may have identified the newest target for treating cancer,” says Chalfant. “Because of the important role this protein plays in a number of cellular functions, it could also have large implications for a variety of diseases like cancer that are caused by inflammation.”

With assistance from Massey’s Lipidomics Developing Shared Resource core, the researchers were able to determine the composition of the bioactive lipids regulated by CPTP. Residing in the cytosol, or the liquid within cells, the team found that CPTP regulates catabolism of C1P, a process that breaks down the molecule in order to release its energy. They also demonstrated that CPTP transports C1P to the cellular membrane where it helps synthesize eicosanoids from fatty acids in the membrane.

Confirming a decade of research from Chalfant’s laboratory, the scientists provided further proof that C1P regulates group IVA phospholipase A2, an enzyme that promotes inflammation through the production of a fatty acid known as arachidonic acid. The release of arachidonic acid via C1P activation of this enzyme was shown to trigger the production of eicosanoids. These findings help to explain the reported link between ceramide kinase, the enzyme responsible for C1P production, and poor prognosis in breast cancer patients, which further suggests that alleviation of systemic inflammation may lead to better prognosis and better treatment responses.

“Moving forward, we hope to use our knowledge of the structure of CPTP in order to find small molecules and other means that can block it,” says Chalfant. “The immediate uses of such therapeutics might be to restore clotting in trauma patients by maintaining the levels of specific eicosanoids that mediate blood clotting. However, with further research we hope to define exactly how CPTP is produced so that we can regulate its production and potentially develop new treatments for a variety of diseases.”

Chalfant collaborated on this study with co-lead author Rhoderick Brown, Ph.D., from the University of Minnesota; Dayanjan S. Wijesinghe, postdoctoral fellow in the Department of Biochemistry and Molecular Biology at VCU School of Medicine; Dhirendra Simanshu, Ph.D., from Memorial Sloan-Kettering Cancer Center; Dinshaw Patel, Ph.D., a member of the National Academy of Sciences from Memorial Sloan-Kettering Cancer Center; Xianqiong Zou, Ravi Kanth Kamlekar, Xiuhong Zhai, Shrawan Mishra and Edward Hinchcliffe, Ph.D., all from the University of Minnesota; Julian Molotkovsky from the Russian Academy of Sciences in Moscow, Russia; and Lucy Malinina from CIC bioGUNE in Derio-Bilbao, Spain.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sperm Motility Gene Linked to Height
A team of scientists believe they have identified the association between human height and a specific gene found in sperm.
Friday, May 29, 2015
Scientific News
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
IU Research Reveals Link between Molecular Mechanisms in Prostate Cancer and Ewing's sarcoma
Researchers at IU have suggested that the molecular mechanism that triggers the rare disease Ewing's sarcoma could act as a potential new direction for the treatment of more than half of patients with prostate cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Advances in Alzheimer’s Research
Researchers show how a diseased vertebrate brain can naturally react to Alzheimer’s pathology by forming more neurons.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Peptides vs. Superbugs
Scientists successfully develop a shuttle system made of liquid-crystalline nanomaterials that protect peptites.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos