Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

DNA Robots Find and Tag Blood Cells

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
Researchers have created a fleet of molecular “robots” that can home in on specific human cells and mark them for drug therapy or destruction.

The nanorobots—a collection of DNA molecules, some attached to antibodies—were designed to seek a specific set of human blood cells and attach a fluorescent tag to the cell surfaces. Details of the system were published July 28, 2013, in the online edition of Nature Nanotechnology.

“This opens up the possibility of using such molecules to target, treat, or kill specific cells without affecting similar healthy cells,” said the study’s senior investigator, Milan Stojanovic, PhD, associate professor of medicine and of biomedical engineering at Columbia University Medical Center. “In our experiment, we tagged the cells with a fluorescent marker; but we could replace that with a drug or with a toxin to kill the cell.”

Though other DNA nanorobots have been designed to deliver drugs to cells, the advantage of Stojanovic’s fleet is its ability to distinguish cell populations that do not share a single distinctive feature.

Cells, including cancer cells, rarely possess a single, exclusive feature that sets them apart from all other cells. This makes it difficult to design drugs without side effects. Drugs can be designed to target cancer cells with a specific receptor, but healthy cells with the same receptor will also be targeted.

The only way to target cells more precisely is to identify cells based on a collection of features. “If we look for the presence of five, six, or more proteins on the cell surface, we can be more selective,” Dr. Stojanovic said. Large cell-sorting machines have the ability to identify cells based on multiple proteins, but until now, molecular therapeutics have not had that capability.
How It Works

Instead of building a single complex molecule to identify multiple features of a cell surface, Dr. Stojanovic and his colleagues at Columbia used a different, and potentially easier, approach based on multiple simple molecules, which together form a robot (or automaton, as the authors prefer calling it).

To identify a cell possessing three specific surface proteins, Dr. Stojanovic first constructed three different components for molecular robots. Each component consisted of a piece of double-stranded DNA attached to an antibody specific to one of the surface proteins. When these components are added to a collection of cells, the antibody portions of the robot bind to their respective proteins (in the figure, CD45, CD3, and CD8) and work in concert.

On cells where all three components are attached, the robot is functional and a fourth component (labeled 0 below) initiates a chain reaction among the DNA strands. Each component swaps a strand of DNA with another, until the end of the swap, when the last antibody obtains a strand of DNA that is fluorescently labeled.

At the end of the chain reaction—which takes less than 15 minutes in a sample of human blood—only cells with the three surface proteins are labeled with the fluorescent marker.

“We have demonstrated our concept with blood cells because their surface proteins are well known, but in principle our molecules could be deployed anywhere in the body,” Dr. Stojanovic said. In addition, the system can be expanded to identify four, five, or even more surface proteins.

Now the researchers must show that their molecular robots work in a living animal; the next step will be experiments in mice.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Friday, July 24, 2015
Non-Gluten Proteins as Targets of Immune Response to Wheat in Celiac Disease
The results were reported online in the Journal of Proteome Research.
Thursday, December 18, 2014
Protein Linked to Cognitive Decline in Alzheimer’s Identified
Findings highlight potential therapeutic targets.
Wednesday, June 26, 2013
Type 1 Diabetes and Heart Disease Linked by Inflammatory Protein
Therapeutic agents that block the protein calprotectin could potentially reverse or slow the progression of atherosclerosis in people with type 1 diabetes.
Wednesday, May 08, 2013
Anthrax Toxin Receptor 2 (ANTXR2) Protein is Necessary for Successful Labor and Birth
Columbia University study found that female mice lacking ANTXR2 were able to get pregnant but unable to deliver.
Tuesday, June 26, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!