Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Why Tumors Become Drug-Resistant

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
New findings could lead to drugs that fight back when tumors don’t respond to treatment.

Cancer drugs known as ErbB inhibitors have shown great success in treating many patients with lung, breast, colon and other types of cancer. However, ErbB drug resistance means that many other patients do not respond, and even among those who do, tumors commonly come back.

A new study from MIT reveals that much of this resistance develops because a protein called AXL helps cancer cells to circumvent the effects of ErbB inhibitors, allowing them to grow unchecked. The findings suggest that combining drugs that target AXL and ErbB receptors could offer a better way to fight tumors, says Doug Lauffenburger, the Ford Professor of Bioengineering, head of MIT’s Department of Biological Engineering and an affiliate member of MIT’s Koch Institute for Integrative Cancer Research.

“Drug resistance is the major challenge in cancer these days. People are coming up with a lot of targeted therapies for particular genes and identifying drugs that work against them, but resistance is just invariably the issue,” says Lauffenburger, the senior author of a paper describing the findings in the Aug. 6 issue of Science Signaling.

ErbBs, a family of epithelial growth factor receptors (EGFRs), are proteins that are often overactive in cancer cells, causing them to grow and divide uncontrollably. The drug Iressa is used to treat lung cancer patients whose tumors overexpress one type of ErbB mutant, and Herceptin targets another ErbB family member that is found in certain types of breast cancer.

“There are a lot of excellent drugs that target EGFR itself or other members of that family, yet they have these limitations,” Lauffenburger says.

Systems analysis

In the new study, Lauffenburger and colleagues set out to identify factors that help tumor cells become resistant to EGFR and other ErbB inhibitors. To do this, they developed a new computer model and applied it to a large dataset called the Cancer Cell Line Encyclopedia, which includes information on about 1,000 human cancer lines and their responses to different drugs.

Led by biological engineering graduate student Aaron Meyer, lead author of the paper, the researchers created a machine learning program that can sift through the data and look for pairs of overexpressed proteins that make tumor cells resistant to EGFR inhibitors. In this case, they searched for the EGFR protein in combination with every other possible protein in the database, one pair at a time.

Through this analysis, the researchers found that EGFR paired with the AXL receptor appears to be the strongest marker for EGFR inhibitor resistance. They found this pattern across many types of cancer, including lung, breast and pancreatic.

A few previous studies have shown that overexpression of AXL is associated with resistance to EGFR inhibitors in a particular tumor, but this is the first systematic study to demonstrate the correlation, Lauffenburger says. This “systems biology” approach, which focuses on complex interactions within biological systems, is critical for finding new drugs that work together to knock out cancer’s defense mechanisms, he says.

“It’s now well known that when you look for a single pathway, you won’t get to an effective therapeutic. You will end up with resistance,” Lauffenburger says. “You’ve got to look at pathways in combination, you’ve got to look at whole interacting networks. That’s the only way.”

Clues to a mystery

Then, in experiments on cancer cells grown in the lab, the researchers found that the AXL protein tends to cluster with EGFR on cell surfaces, so when EGFR is activated, AXL also becomes active. AXL then not only stimulates further much of the same cellular machinery targeted by EGFR, but also additional pathways provoking cell growth and division. AXL also helps cells become more motile, allowing cancer to spread through the body.

The researchers also showed that other members of the ErbB family beyond EGFR similarly cluster with AXL. This suggests that AXL inhibition may also be effective for treating breast cancers dependent on ErbB2 or ovarian cancers that overexpress ErbB3, Lauffenburger says.

The study sheds light on the complicated interactions between EGFR and other proteins that help tumors re-emerge after initial treatment with EGFR inhibitors, and could help researchers develop improved treatments, says Trever Bivona, an assistant professor of medicine at the University of California at San Francisco.

“The implication that emerges from the findings is that the way receptor kinases interact to undermine sensitivity to treatment is quite complex,” says Bivona, who was not part of the research team.

High levels of AXL have previously been found in triple-negative breast cancer cells, which lack the three most common breast cancer markers — estrogen receptors, progesterone receptors and HER2 receptors. The new finding may explain why EGFR inhibitors fail to work on these tumors even though they have high EGFR levels, Lauffenburger says.

“Triple-negative breast cancer cells were a special interest of ours mainly because it’s always been such a mystery why they have not responded to EGFR inhibitors,” he says.

The new study suggests that AXL inhibitors, either alone or in combination with EGFR inhibitors, might be an effective treatment for triple-negative breast cancer, which is now treated with chemotherapy drugs that have severe side effects. A handful of clinical trials are currently testing AXL inhibitors against different types of cancer, and Lauffenburger is now planning studies in mice to investigate the effects of combining AXL and EGFR pathway inhibitors.

Biological engineering graduate student Miles Miller and Frank Gertler, a professor of biology and member of the Koch Institute, are also co-authors of the paper. The research was funded by the National Cancer Institute Integrative Cancer Biology Program, the Department of Defense Breast Cancer Research Program, and the Koch Institute Frontier Research Program.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Reducing Caloric Intake Delays Nerve Cell Loss
Study points to role of protein in anti-aging benefits of calorie restriction.
Thursday, May 23, 2013
Study IDs Key Protein for Cell Death
Findings may offer a new way to kill cancer cells by forcing them into an alternative programmed-death pathway.
Tuesday, May 14, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Sorting out the Structure of a Parkinson’s Protein
Computer modeling may resolve conflicting results and offer hints for new drug-design strategies.
Tuesday, April 02, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Scientific News
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos