Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovery about DNA Repair Could Lead to Improved Cancer Treatments

Published: Monday, September 16, 2013
Last Updated: Monday, September 16, 2013
Bookmark and Share
Medical researchers have made a basic science discovery that advances the understanding of how DNA repairs itself.

When DNA becomes too damaged it ultimately leads to cancer.

Faculty of Medicine & Dentistry researcher Mark Glover and his colleagues published their findings in the peer-reviewed journal, Structure (Cell Press), earlier this summer. For years, scientists thought two key proteins involved in DNA repair operated in exactly the same way.  Glover’s team discovered how the proteins operate and communicate is vastly different — information that could lead to improved cancer treatments.

Glover explains that a protein known as BRCA1 acts like a hallway monitor — constantly scanning DNA for damage. At the first sign of problems, this protein figures out what kind of help is needed, and “radios” in a cleanup crew of other proteins.

A second protein, known as TopBP1, ensures that DNA can copy itself when needed. When this process stalls due to DNA damage, this protein also calls in a cleanup crew. But Glover likens its method of communication to tweets, rather than radio.

“The two proteins may be related and look very similar, but their roles and the way they communicate are in fact very different, which was surprising to us,” Glover says. “Each protein plays a role in recognizing damaged regions of DNA, but the problem they each solve is different.

“The question now is how can we use this information to try to improve cancer therapies? Could we temporarily knock out cancer DNA’s ability to repair itself from radiation damage? Could we administer radiation at a point that prevents cancer DNA from copying itself? Could we inhibit the activity of proteins that are normally trying to run around and fix the damage?

“Maybe some of these ideas could ultimately translate into less radiation or chemotherapy needed for patients, if the treatment can be more targeted,” says Glover, who works in the Department of Biochemistry.

His team is continuing its research in this area, and wants to learn more about the role of the TopBP1 protein and why it favours communicating with a specific protein. They also want to conduct tests in their lab to see if the use of certain medications could alter the way these proteins work in a way that could result in new or improved cancer treatments.

Glover’s lab members make 3-D images of proteins, making it easier to understand and see how proteins work.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Infectious Prion Structure Shines Light on BSE
Prion research useing electron cryomicroscopy technology identified the structure of the infectious prion protein that causes BSE.
Monday, September 12, 2016
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Wednesday, July 22, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Disordered Protein 'Shape Shifts' to Avoid Crowding
Study suggests disordered protein escapes from the cell membrane when it runs out of space.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
"Pac-man Protein" May Aid the Fight Against Cancer
Scientists at the University of Sheffield have identified a protein which causes cells to eat their dying neighbours, helping to prevent inflammation – something which is vital in the fight to stop cancer spreading.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!