Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Funding Boosts New Alzheimer’s Research

Published: Wednesday, September 18, 2013
Last Updated: Wednesday, September 18, 2013
Bookmark and Share
$45 million has been awarded to test early interventions and explore new approaches.

Researchers will test promising drugs aimed at preventing Alzheimer’s and identify and validate biological targets for novel therapies, with approximately $45 million in new funding from the National Institutes of Health. The initiative will support innovative new studies as part of an intensified national effort to find effective interventions for this devastating degenerative brain disease. 

The studies are among the first to be developed with direction from the 2012 NIH Alzheimer’s Disease Research Summit: Path to Treatment and Prevention and reflect research goals in the National Plan to Address Alzheimer’s Disease. Of the funding, $40 million is from an allocation from the Office of the NIH Director, Dr. Francis Collins, with additional funding from the National Institute on Aging (NIA), the lead Institute within NIH for Alzheimer’s research. 

“As many as 5 million Americans face the challenge of Alzheimer’s disease, which robs them of their memories, their independence, and ultimately, their lives,” Dr. Collins said. “We are determined, even in a time of constrained fiscal resources, to capitalize on exciting scientific opportunities to advance understanding of Alzheimer’s biology and find effective therapies as quickly as possible.” 

The clinical trials investigate possible ways to stop the progression of the disease. The translational research study awards are focused on identifying, characterizing and validating novel therapeutic targets.

“We know that Alzheimer’s-related brain changes take place years, even decades, before symptoms appear. That really may be the optimal window for drugs that delay progression or prevent the disease altogether,” said NIA Director Dr. Richard Hodes. “The clinical trials getting under way with these funds will test treatments in symptom-free volunteers at risk for the disease, or those in the very earliest stages — where we hope we can make the biggest difference.” 

Basic and genetic studies of the disease — from the abnormal proteins involved, to genetic influences, to inflammation and other Alzheimer’s - related brain changes—have advanced our knowledge. This has given us new insights into the biological underpinnings of this extremely complex disorder, Dr. Hodes said. 

Today’s awards support the following clinical trials. (Individual investigators can be contacted about when these studies will recruit participants.):

The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) Trial — Dr. Randall Bateman, Washington University, St. Louis, and co-investigators. $1.5 million in fiscal 2013, with the potential for $6 million over four years

The trial is testing new anti-amyloid-beta drug treatments in volunteers who have an inherited form of Alzheimer’s disease. While early-onset Alzheimer’s is rare, the knowledge gained from this study will be highly relevant to both early-and late-onset forms of the disease. This rare form can occur in people as early as their 30s. Amyloid plaques in the brain are a hallmark of Alzheimer’s and are thought to interfere with communication among brain cells, and anti-amyloid-beta therapies attempt to treat that process. Dr. Bateman will lead a team recruiting volunteers free of symptoms or in the earliest stages of the disorder.

The four-year trial, a multi-site international effort, will test three anti-amyloid-beta interventions: gantenerumab, solanezumab and a third, as yet undetermined, drug. This trial is also supported by the Alzheimer's Association® and the following companies: Roche, Lilly, Avid Radiopharmaceuticals and CogState. (NIA support: AG042791-01A1)

The Alzheimer's Prevention Initiative APOE4 Trial — Drs. Eric Reiman and Pierre Tariot, Banner Alzheimer’s Institute, Phoenix, and co-investigators. Fully funded in fiscal 2013 at $33.2 million 

This five-year prevention trial proposes to test an anti-amyloid drug in cognitively normal older volunteers who are at increased risk of developing late-onset Alzheimer’s because they inherited two copies of the APOE4 allele, the best known genetic risk for late-onset disease. The treatment, which has not yet been selected, will be tested in this randomized, controlled clinical trial at multiple sites. Participants will be assessed through cognitive tests, brain imaging and cerebrospinal fluid measurements to evaluate whether the drug impacts amyloid, other biological measurements and the memory and thinking problems related to the disease. The study will test the role of amyloid in the development of Alzheimer’s and will, through imaging and biomarker techniques, help identify faster ways to evaluate other promising prevention therapies in the future. It is anticipated that the study will also be supported with private funding. (NIA support: AG 046150-01)

Allopregnanolone Regenerative Therapeutic for MCI/Alzheimer’s: Dose Finding Phase 1 — Drs. Roberta Brinton and Lon Schneider, University of Southern California, Los Angeles. Fully funded in fiscal 2013 at $2.4 million

This early-phase clinical trial will evaluate over 12 weeks the safety and tolerability of increasing doses of allopregnanolone, a natural brain steroid, in treating mild cognitive impairment and Alzheimer’s disease. The drug has been shown to promote the generation of new brain cells, reduce amyloid levels, and restore cognitive function in pre-clinical animal testing. NIA has supported Dr. Brinton’s research over many years, including basic science grants to understand allopregnanolone’s mechanism of action in the brain, a drug development grant which included development of optimal dose and formulation, and support for pre-clinical toxicology studies. This support helped bring Dr. Brinton and colleagues to the stage of being able to go into a human Phase I trial. (NIA support: AG 046148-01) Studies focused on the identification and validation of novel therapeutic targets for Alzheimer’s disease include: 

Pathway Discovery, Validation and Compound Identification for Alzheimer’s Disease — Drs. Philip De Jager, of the Brigham and Women's Hospital, Broad Institute, Harvard University, Boston, and David Bennett, of Rush University Medical Center, Chicago. $1.7 million in fiscal 2013, with the potential of $7.9 million over five years

The study will discover, characterize and validate complex molecular networks and candidate genes that influence susceptibility to cognitive decline and Alzheimer’s disease. Using cutting-edge computational methods, this multi-disciplinary team will analyze rich clinical, pathological, genomic and other large-scale molecular data collected from over 1,000 volunteers from the Religious Order Study and the Rush Memory and Aging Project. 

Through a systems biology approach looking at biological interactions involved in the disease, the project ultimately seeks to identify compounds that normalize the activity of dysfunctional nodes in molecular networks and to identify drugs for several novel therapeutic targets. To accelerate the testing of promising therapies for future clinical trials, the researchers will focus on drugs that have already undergone Phase I testing in humans. (NIA support: AG 046152)

Integrative Biology Approach to Complexity of Alzheimer’s Disease — Dr. Eric Schadt of Icahn School of Medicine at Mount Sinai, New York City, and a team of investigators. $1.6 million in fiscal 2013, with the potential of $8.2 million over five years

This study will apply innovative analytical methods to large-scale molecular, cellular and clinical data from Alzheimer’s patients to construct biological network models and gain new insights into the complex mechanisms of the disease. Several cellular and animal models will be used to validate the actions of individual genes, as well as entire molecular networks predicted to drive the disease. The team will also employ a computational approach to test whether any existing drugs currently used for other conditions are capable of modulating the Alzheimer’s networks and can, therefore, be repurposed for Alzheimer’s treatment or prevention. (NIA support: AG 046170-01)

A Systems Approach to Targeting Innate Immunity in Alzheimer’s — Dr. Todd Golde, University of Florida, Gainesville, and colleagues. $1.6 million in fiscal 2013, with the potential of $7.7 million over five years

This study builds on the genetic and pathological evidence that the innate immune system, which provides immediate defense against infection, and brain inflammation have a significant role in Alzheimer’s disease. To identify and characterize novel therapeutic targets within the innate immune system, this study will use a systems biology approach to integrate genomic, gene expression, and pathological data from Alzheimer’s patients and Alzheimer’s mouse models and analyze them in novel ways. The team will test in animal models of the disease the validity and therapeutic potential of the key factors predicted by the analysis. This has the potential to speed the discovery and testing of Alzheimer’s disease prevention and treatment therapies by targeting the immune system. (NIA support: AG 046139-01).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientists Uncover Nuclear Process in the Brain that May Affect Disease
NIH-funded study highlights the possible role of glial brain cells in neurological disorders.
Tuesday, August 18, 2015
PINK1 Protein Crucial for Removing Broken-Down Energy Reactors
NIH study suggests potential new pathway to target for treating ALS and other diseases.
Thursday, August 13, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Researchers Identify Protein in Mice that Helps Prepare for Healthy Egg-sperm Union
Protein RGS2 plays a critical role in preserving the fertilizability of the ovulated egg.
Wednesday, August 05, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Scientific News
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos