Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

It Takes A(n Academic) Village to Determine an Enzyme's Function

Published: Wednesday, October 02, 2013
Last Updated: Wednesday, October 02, 2013
Bookmark and Share
Scientists have sequenced the genomes of nearly 6,900 organisms, but they know the functions of only about half of the protein-coding genes thus far discovered.

Now a multidisciplinary effort involving 15 scientists from three institutions has begun chipping away at this mystery – in a big way. Their work to identify the function of one bacterial protein and the biochemical pathway in which it operates will also help identify the functions of hundreds of other proteins.

A report of their new approach and findings appears in the journal Nature.

The research team used computational methods combined with a broad array of laboratory techniques to narrow the list of possible small molecules that interact with the unknown protein, an enzyme (now known as HpbD), and to identify its role in its host, the marine bacterium Pelagibaca bermudensis.

The goal was not simply to identify the protein’s function but to forge a new way to tackle the vast and growing body of sequence data for which functional information is lacking, said University of Illinois biochemistry professor John Gerlt, one of five co-principal investigators on the study.

“At present, the number of proteins in the protein-sequence database is approaching 42 million,” Gerlt said. “But no more than 50 percent of these proteins have reliable functions assigned to them.”

Without knowing what all of the proteins that are encoded by a genome do, “one simply cannot understand the biology of the organism,” Gerlt said.

The new effort is part of the Enzyme Function Initiative (EFI) at the Institute for Genomic Biology at Illinois. This initiative, funded by the National Institutes of General Medical Sciences and led by Gerlt, is designed to address “complex problems that are of central importance to biomedical science but are beyond the means of any one research group.” The EFI focuses on enzymes of bacterial origin.

“There was a time when I would apologize that we were focusing on bacterial genomes and not human genomes,” Gerlt said. “However, it is now well established that we do not live in isolation, that we have a microbiome associated with us and that microbiome is made up of thousands of different bacterial species that inhabit our bodies. It is very important for us to understand what these bacteria are capable of doing.”

Matthew Jacobson and postdoctoral researcher Suwen Zhao at the University of California, San Francisco led the computational effort that was at the heart of streamlining the process of protein discovery for the group. Their method pairs an enzyme with tens of thousands of possible metabolic partners to see which molecules fit together best. Since enzymes act on other molecules to perform a specific function, identifying an enzyme’s target (also called its substrate) offers a big clue to the enzyme’s activity.

This process led to the identification of four possible substrates (out of an original list of more than 87,000). Zhao passed the identities of these four substrates and a likely pathway in which the enzyme operated along to Gerlt and his colleagues (microbiology professor John Cronan and chemistry professor Jonathan Sweedler, both at Illinois, and Steven Almo at the Albert Einstein College of Medicine). Then the painstaking laboratory work began.

Several lines of research helped identify which of the four substrates actually interact with the enzyme, confirmed the function of the enzyme and the chemical pathway in which it operates.

The researchers discovered that their enzyme catalyzes the first step in a biochemical pathway that enables the marine bacterium to consume one of the substrates identified in Jacobson’s lab. The bacterium uses the substrate, known as tHypB (tee-hype-bee), as a carbon source.

More importantly, the team discovered that tHypB has another, perhaps more important, role in the bacterium: It helps the organism deal with the stress of life in a salty environment, Gerlt said.

This effort to understand the function of one enzyme offers a cascade of other benefits, Gerlt said. One big advantage of this approach is that it aids in the identification of orthologs (enzymes that perform the same task in other organisms).

“There are dozens of orthologs in the protein database that were identified by Patricia Babbitt and her colleagues at UCSF, so we determined not only the function of one but we also determined the functions of all these enzymes,” he said. And because the researchers also identified the functions of all the enzymes in the pathway that allows the microbe to consume tHypB, their work offers insight into the role of orthologous enzymes in similar pathways in other organisms.

Researchers with the EFI are working to develop strategies and tools that other researchers can use to accomplish similar feats of discovery.

“There was a time when a researcher devoted his or her entire career to a single enzyme,” Gerlt said. “That was a long time ago, although some people still practice that. Now, genome-sequencing technology has changed the way that biologists have to look at problems. We can’t keep looking at problems in isolation.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How TALENs Find Their Way Around the Genome
Scientists from the University of Illinois Urbana-Champaign have discovered how a genome editing technology finds its way to a specific location in the genome.
Thursday, June 04, 2015
Team Discovers How Microbes Build a Powerful Antibiotic
Researchers discovery opens up new avenues of research into thousands of similar molecules.
Wednesday, October 29, 2014
Odd Biochemistry Yields Lethal Bacterial Protein
While working out the structure of a cell-killing protein produced by some strains of the bacterium Enterococcus faecalis, researchers stumbled on a bit of unusual biochemistry.
Wednesday, January 23, 2013
Team Solves Mystery Associated with DNA Repair
Every time a human or bacterial cell divides it first must copy its DNA. Specialized proteins unzip the intertwined DNA strands while others follow and build new strands, using the originals as templates.
Wednesday, December 19, 2012
Research Conducted on Ion Channels
Researchers see subtle differences between two branches of an important family of neurotransmitter-gated ion channels by using a high-resolution single-molecule study technique.
Thursday, July 28, 2011
Computational Microscope Peers into the Working Ribosome
Two new studies reveal how the ribosome interacts with other molecules to assemble new proteins and guide them toward their destination in biological cells.
Wednesday, November 25, 2009
Newly Found DNA Catalysts Cleave DNA with Water Molecule
The deoxyribozymes accomplish the DNA cleavage with the sequence-selectivity and site-selectivity required for a practical catalyst, the researchers say.
Wednesday, August 19, 2009
Researchers use new Approach to Predict Protein Function
The study describes an integrated approach using experimental techniques, computational techniques and X-ray crystallography for predicting the function of a protein.
Tuesday, July 17, 2007
Compound Reveals Link Between Signaling Protein And Cell Migration
The protein, known as RKIP, controls activity of kinases, a type of enzyme that acts as a key component in the biochemical signaling pathways responsible for determining almost all cellular activity.
Wednesday, September 28, 2005
Scientific News
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!