Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Proteins in their Natural Habitat

Published: Wednesday, October 30, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
Proteins which reside in the membrane of cells play a key role in many biological processes and provide targets for more than half of current drug treatments.

These membrane proteins are notoriously difficult to study in their natural environment, but scientists at the University of Oxford have now developed a technique to do just that, combining the use of sophisticated nanodiscs and mass spectrometers.

Mass spectrometry is a technique which allows scientists to probe molecular interactions. Using a high-tech 'nanoflow' system, molecules are transmitted into the instrument in charged water droplets, which then undergo evaporation releasing molecules into the gas phase of the mass spectrometer.

But membrane proteins are difficult to measure in this way, as they are hydrophobic: they don't dissolve in water. One way to overcome this problem is to mix them with detergents. Detergents work by surrounding insoluble substances with a water-friendly shell. Each detergent particle has two ends – the heads are attracted to water and the tails are attracted to insoluble regions of the membrane protein. The tails stick to the hydrophobic parts, leaving a shell of water-loving heads around the outside. The molecules can then easily dissolve in water.

Although detergents can be used to get membrane proteins to dissolve in water, these artificial chemicals can damage protein structures and do not faithfully mimic the natural environments in which they are normally found. The Oxford group, led by Professor Carol Robinson, has utilised a technique which allows them to study membrane protein structures by mass spectrometry from their natural environment. Their new method, published in Nature Methods, uses tiny disc-like structures made from molecules called lipids, as first author Dr Jonathan Hopper explains:

'Membrane proteins are naturally found in flat structures called lipid bilayers. Lipids are a bit like nature's detergents, in that they have water-loving heads and fat-loving tails. Lipid bilayers are made up of two sheets of lipids with their tails pointing inwards.

'The nanodiscs we use are made from lipids, the same material that membrane proteins occupy in the body. It's essentially as if you took a round cookie cutter to remove a section of the natural bilayer, so the conditions are just like they would be in the body. The discs are stabilised by wrapping a belt of proteins around them to keep the exposed lipid tails from the water.

'Aside from the nanodiscs, we actually got great results from 'bicelles', which are made in a similar way.  The main difference is that instead of putting a belt of proteins around the edge, we plug the gap with short-chain lipids instead. This actually gives us much more control over the size and structure of the disc.'

These innovations enable researchers to study membrane protein structures using sophisticated mass spectrometry, in environments as close to the human body as possible.

'I am delighted that this has worked, it is completely unexpected given the difficulties we have had in the past in studying these complexes in lipidic environments,' says study leader Professor Carol Robinson. 'The breakthrough enables us to study membrane proteins in a natural environment for the first time. We believe this will have a great impact on structural biology approaches, and could in turn lead to better-designed drug treatments.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Mimicking Evolution to Create Novel Proteins
A study by researchers in the Kuhlman lab offers a new route to design the 'cellular machines' needed to understand and battle diseases.
Can Gender Play A Role In Determining Cancer Treatment Choices?
MD Anderson study reveals “sex-biased” gene signatures in review of 13 cancer types.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!