Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Identify Seven Types of Breast Cancer

Published: Wednesday, October 30, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
The discovery could lead to new and improved prognostic tests for patients with the disease.

The findings, reported in the British Journal of Cancer, could revolutionise the way in which breast cancer patients are treated by giving clinicians more detailed information about a patient’s breast cancer type and helping them create a more personalised treatment plan, avoiding over or under-treatment.

The research, funded by Breast Cancer Campaign, was led by Dr Andy Green in the University’s Division of Oncology, in collaboration with colleagues at Nottingham University Hospitals NHS Trust and Nottingham Trent University.

Dr Green said: “With an increasing number of treatment options available for breast cancer patients, decision making regarding the choice of the most appropriate treatment method is becoming increasingly complex. Improvements in care and outcome for patients with breast cancer will involve improved targeting of effective therapies to appropriate patients.

“Equally important should be improvement in parallel strategies to avoid unnecessary or inappropriate treatment and side effects.”

Affordable test 
Breast cancer is a biologically complex disease and each tumour can have very different properties, so the more information that doctors have about each patient’s cancer, the better they can plan treatments. Currently just two proteins are tested for as standard in breast cancer cells (known as biomarkers): the oestrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2), alongside information about the tumour size, spread and grade[1],[2],[3].

Dr Green and colleagues, who also included Professor Ian Ellis in the Division of Oncology and Jon Garibaldi and Daniele Soria in the University’s School of Computer Science, wanted to see if, by testing for more biomarkers, but keeping the number of biomarkers as low as possible to make an affordable test a realistic proposition, they could devise categories that better reflect the diversity of breast cancer and, importantly, better predict how a patient’s cancer is likely to progress.

Using tissue that now forms part of the Breast Cancer Campaign Tissue Bank, the team tested 1073 tumour samples and from these, 997 (93%) fitted perfectly into one of seven classes, whereas 76 (7%) had mixed characteristics and couldn’t be put into a distinct category. They then verified these classes in another 238 tumour samples.

The seven classes are defined by different combinations and levels of ten biomarkers found in breast cancer cells. These biomarkers include ER and HER2, the two biomarkers currently tested for in clinics, but also others that are not currently tested for, such as p53, cytokeratins, HER3 and HER4.

Improved survival
To test whether the new classes could give doctors more information about prognosis, Dr Green’s team compared the classes to survival outcomes from the patient samples. Each of the seven classes was found to have its own unique survival outcome. This indicates that the classes can tell us more about prognosis and help doctors to fine-tune treatment plans to improve survival.

Importantly, the technology required to measure protein biomarkers in tumour samples is already in place in most pathology laboratories across the UK, whereas newly developed genetic profiling tests such as Oncotype DX need to be sent to specialist laboratories, which brings additional costs.

With further support including from the Medical Research Council and the University of Nottingham, Dr Green and his colleagues, together with Nottingham Prognostics Limited, have now developed a diagnostic test using these seven distinct classes, which could be ready for use in the clinic in as little as two years. The test, called the Nottingham Prognostic Index Plus (NPI+), integrates the seven new classes into the existing Nottingham Prognostic Index test currently used by pathologists to assess information about tumour size, spread and grade.

Baroness Delyth Morgan, Chief Executive of Breast Cancer Campaign said, “The days of one size fits all treatment are well and truly in the past. We need to ensure the life-saving and life-extending treatments we already have in the clinic are used more effectively – directing the right treatments to those who will benefit, and sparing others from unnecessary side effects, so that by 2050 we can achieve our ambition to overcome breast cancer.

“This new test could be a realistic step towards making the holy grail of personalised treatment a reality, offering hope to the 50,000 women diagnosed with breast cancer in the UK every year.

“Improved prognostic tests, such as NPI+, will be essential pieces of kit for our diagnostic toolbox. We look forward to seeing the results from external validation studies using cases from the UK, USA and Europe and hope that a subsequent feasibility study will allow this exciting work to be fast-tracked into the clinic.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos