Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Manipulation of Protein Could Help Stop Spread of Cancer Cells

Published: Monday, November 18, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
New findings, published in the Nature journal Oncogene, reveal how a protein, PRH, is normally able to prevent cells from unnecessary migration.

Understanding how and why cancer cells move away from their original location is important to find ways to stop the spread of the disease. It is likely that PRH is less effective in cancer cells allowing the cells to venture away.  

Researchers from the Universities of Bristol and Birmingham, who have been studying breast and prostate cancer cells, show how manipulating PRH’s levels in cancer cells can hinder their ability to penetrate into neighbouring environments, potentially preventing them from entering nearby blood vessels. The findings could lead to new ways of combating the spread of the disease in multiple cancers.

PRH belongs to a group of proteins known as ‘transcription factors’, meaning its role is to interact with DNA to ‘switch’ particular genes ‘on’ or ‘off’.  Scientists have been aware of PRHs’ role in controlling cell growth and specification for some time.  For example, it is essential for the healthy development of foetuses but this is the first time PRH has been implicated in the movement of cancer cells.

After growing normal and cancerous breast and prostate cells in the laboratory the team used genetic techniques to either increase or decrease PRH levels. The team then examined the cells and found that without PRH, the cells migrated much faster, and were able to invade through a porous gel more efficiently.

The researchers show that PRH is responsible for ‘switching on’ another protein called Endoglin, which has also been shown to be important in cell migration. The low levels of PRH found in cancer cells leads to low levels of Endoglin, and therefore results in increased cell migration and enhanced invasion. Interestingly, adding additional Endoglin to cancer cells with no PRH was sufficient to reduce their migration and invasion.

Dr Kevin Gaston, co-author of the study and Reader at Bristol’s School of Biochemistry in the Faculty of Medical and Veterinary Sciences, said: “It is not simply the growth of cancers but their ability to move to multiple locations in the body that makes the disease so deadly. PRH transcription factor inhibits the migration of normal and cancerous breast cells and prostate cells and this represents a novel mechanism that could be important in multiple cancers.”

Dr Padma-Sheela Jayaraman, co-author of the study and Senior Lecturer at the University of Birmingham, said: “Here we show for the first time that the PRH transcription factor inhibits the migration of normal and cancerous breast cells and prostate cells. This work reveals exciting new targets for future translational research.”

Importantly, as this mechanism appears to apply to more than one cancer type, PRH regulation of Endoglin may represent a novel method for controlling migration that could potentially be exploited to treat multiple cancers.

Katherine Woods, Research Information Manager at Breast Cancer Campaign, said: “This interesting work has brought us another step closer to understanding how breast cancer cells move and spread around the body, and closer to knowing how we could stop this spread to help women outlive the disease. This research is all the more valuable because it could have implications for other cancers such as prostate and thyroid cancer, and some leukaemias.”

The Breast Cancer Campaign-funded study is published in the journal Oncogene. A University of Bristol studentship and a MRC Studentship held at the University of Birmingham also helped fund this work.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Responsible for Controlling Communication Between Brain Cells Identified
Scientists are a step closer to understanding how some of the brain’s 100 billion nerve cells co-ordinate their communication.
Thursday, November 28, 2013
Researchers Find Key to Blood-Clotting Process
Researchers have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.
Wednesday, June 26, 2013
Random Walks on DNA
Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA.
Monday, April 22, 2013
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!