Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Viral Infections May Have Met Their Match

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Researchers ID protein that sets off body's response to fight infection.

A Massachusetts General Hospital-led research team has identified an immune cell protein that is critical to setting off the body’s initial response against viral infection.

The report describes finding that a protein called GEF-H1 is essential to the ability of macrophages — major contributors to the innate immune system — to respond to viral infections such as influenza. The report will be published in an upcoming issue of Nature Immunology and is receiving early online release.

“The detection of viral genetic material inside an infected cell is critical to initiating the responses that signal the immune system to fight an infection and prevent its spread throughout the body,” said Hans-Christian Reinecker of the Center for the Study of Inflammatory Bowel Disease in the MGH Gastrointestinal Unit, senior author of the report. “Our findings indicate that GEF-H1 may control immune responses against a wide variety of RNA and DNA viruses that pose a threat to human health.”

The body’s first line of defense against infection, the innate immune system rapidly responds to invading pathogens by mobilizing white blood cells, chemical factors called cytokines, and antimicrobial peptides. When viruses invade cells, they often move toward the nucleus to replicate and sometimes to integrate their own genetic material into that of the host cell, traveling along structures called microtubules that cells use for internal protein transport. But how microtubule-based movement of viral components contributes to induction of the immune response has been unknown.

GEF-H1 is known to bind to microtubules, and previous research indicated that it has a role in immune recognition of bacteria. A series of experiments by Reinecker’s team found that GEF-H1 is expressed in macrophages — key components of the innate immune system — and activated in response to viral RNA, and that it controls the expression of beta interferon and other cytokines.  Mice in which expression of GEF-H1 was knocked out were unable to mount an effective immune response to influenza A and to encephalomyocarditis, a virus that causes several types of infection in animals.

“The sensing of intracellular viral nucleic acids for induction of interferons is so important that many viruses, including influenza A, have evolved specific strategies to interfere with activation of the interferon defense system,” said Reinecker, an associate professor of medicine at Harvard Medical School. “We are hopeful that this discovery will allow the development of new strategies to curtail viral mechanisms that impede the immune responses to infections that are often associated with high mortality rates.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
A Marker for Breast Cancer
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.
Tuesday, August 13, 2013
HC-LITT to Provide Stabilization Technology to the Harvard Research Community
Harvard research community will have access to the Denator’s Stabilizor™ system for stabilizing biological samples.
Friday, April 24, 2009
Molecule by Molecule, Assay Shows Real-time Gene Activity
The technique could provide Researchers with unprecedented insights into gene expression in living cells.
Thursday, March 23, 2006
Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos