Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bad Proteins Branch Out

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Rice researchers find misfolded proteins are capable of forming tree-like aggregates.

A method by Rice University researchers to model the way proteins fold – and sometimes misfold – has revealed branching behavior that may have implications for Alzheimer’s and other aggregation diseases.

Results from the research will appear online this week in the Proceedings of the National Academy of Sciences.

In an earlier study of the muscle protein titin, Rice chemist Peter Wolynes and his colleagues analyzed the likelihood of misfolding in proteins, in which domains – discrete sections of a protein with independent folding characteristics – become entangled with like sequences on nearby chains. They found the resulting molecular complexes called “dimers” were often unable to perform their functions and could become part of amyloid fibers.

This time, Wolynes and his co-authors, Rice postdoctoral researcher Weihua Zheng and graduate student Nicholas Schafer, modeled constructs containing two, three or four identical titin domains. They discovered that rather than creating the linear connections others had studied in detail, these proteins aggregated by branching; the proteins created structures that cross-linked with neighboring proteins and formed gel-like networks that resemble those that imbue spider silk with its remarkable flexibility and strength.

“We’re asking with this investigation, What happens after that first sticky contact forms?” Wolynes said. “What happens if we add more sticky molecules? Does it continue to build up further structure out of that first contact?

“It turned out this protein we’ve been investigating has two amyloidogenic segments that allow for branch structures. That was a surprise,” he said.

The researchers used their AWSEM (Associative memory, Water-mediated Structure and Energy Model) program to analyze how computer models of muscle proteins interact with each other, particularly in various temperatures that determine when a protein is likely to fold or unfold.

The program relies on Wolynes’ groundbreaking principle of minimal frustration to determine how the energy associated with amino acids, bead-like elements in a monomer chain, determines their interactions with their neighbors as the chain folds into a useful protein.

Proteins usually fold and unfold many times as they carry out their tasks, and each cycle is an opportunity for it to misfold. When that happens, the body generally destroys and discards the useless protein. But when that process fails, misfolded proteins can form the gummy amyloid plaques often found in the brains of Alzheimer’s patients.

The titin proteins the Rice team chose to study are not implicated in disease but have been well-characterized by experimentalists; this gives the researchers a solid basis for comparison.

“In the real muscle protein, each domain is identical in structure but different in sequence to avoid this misfolding phenomenon,” Wolynes said. So experimentalists studying two-domain constructs made the domains identical in every way to look for the misfolding behavior that was confirmed by Rice’s earlier calculations. That prompted Wolynes and his team to create additional protein models with three and four identical domains.

“The experiments yield coarse-grained information and don’t directly reveal detail at the molecular level,” Schafer said. “So we design simulations that allow us to propose candidate misfolded structures. This is an example of how molecular models can be useful for investigating the very early stages of aggregation that are hard to see in experiments, and might be the stages that are the most medically relevant.”

“We want to get the message across that this is a possible scenario for misfolding or aggregation cases — that this branching does exist,” Zheng added. “We want experimentalists to know this is something they should be looking for.”

Wolynes said the lab’s next task is to model proteins that are associated with specific diseases to see what might be happening at the start of aggregation. “We have to investigate a wider variety of structures,” he said. “We have no new evidence these branching structures are pathogenic, but they’re clearly an example of something that happens that has been ignored until now.

“I think this opens up new possibilities in what kind of structures we should be looking at,” he said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacteria Use DNA Replication to Time Key Decision
Rice University researchers have found that in spore-forming bacteria, chromosomal locations of genes can couple the DNA replication cycle to critical decisions about whether to reproduce or form spores.
Monday, July 13, 2015
DNA Mutations get Harder to Hide
Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.
Wednesday, May 27, 2015
Researchers Tune in to Protein Pairs
Rice University team quantifies how mutations affect cell signaling in bacteria.
Tuesday, January 28, 2014
New Statistical Tools Being Developed for Mining Cancer Data
Team from Rice, BCM, UT Austin tackling big data variety.
Monday, December 02, 2013
Rice Lab Finds Molecular Clues to Wilson Disease
Physical biochemists used computer tests and lab experiments to show how mutation alters key protein.
Friday, August 22, 2008
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!