Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scleroderma May be Initiated by Cancer

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
Study show that mutation of a normal gene in a cancer can be the initiator of an autoimmune disease.

The Scleroderma Research Foundation has reported that researchers at The Johns Hopkins University have discovered that some cases of scleroderma are likely to have been initiated by cancer.

In a landmark paper published online on December 5 in Science, researchers focusing on a select group of patients with both scleroderma and cancer, discovered that the patients' immune response to a mutated protein in their tumors resulted in autoimmunity once the immune response spread to the non-mutated form of the protein.

This major insight into the origins of autoimmunity in scleroderma may also have ramifications for other autoimmune diseases. The Scleroderma Research Foundation has provided funding for this work.

Scleroderma (also known as systemic sclerosis) is a rare autoimmune disease affecting approximately 1 in 4,000 Americans. A signature symptom is fibrosis of the skin, although the disease often affects the lungs, kidneys and other organs with life-threatening consequences.

In scleroderma, like many complex autoimmune diseases, little is understood about why and how the immune system becomes dysregulated and begins to attack a patient's own tissues. This study sheds light on this "breaking of tolerance" that is at the heart of autoimmunity.

In this collaborative effort, led by Dr. Antony Rosen, Dr. Bert Vogelstein and Dr. Kenneth Kinzler, researchers looked at patients who were diagnosed with both scleroderma and cancer within a two and a half-year time frame.

Rosen, M.D., a Scientific Advisor for the Scleroderma Research Foundation, is Vice Dean for Research at The Johns Hopkins University and the Mary Betty Stevens Professor of Medicine and Professor of Cell Biology and Pathology. In a previous study, also supported by the Scleroderma Research Foundation and published in Arthritis and Rheumatism in 2010, Casciola-Rosen and colleagues identified a striking group of patients with rapid onset scleroderma and auto-antibodies to RNA polymerase III large subunit (RPC1), who also had cancers diagnosed close in time to the onset of scleroderma.

The Science study, published, provides a mechanistic basis for the earlier observational studies. In this work, Rosen's group collaborated with the research groups of renowned cancer biologists, Bert Vogelstein, M.D., Director of the Ludwig Center, Clayton Professor of Oncology and Pathology and a Howard Hughes Medical Institute investigator and Kenneth Kinzler, Ph.D., Director of the Ludwig Center and Professor of Oncology, both of The Johns Hopkins University.

Sequencing of the gene for RPC1 (POLR3A) in tumors from eight patients with antibodies against RPC1 found mutations in tumors from three of the patients. Additionally, there were other genetic alterations in the POLR3A gene in the tumors from most (five of eight) of the patients with antibodies against RPC1.

The researchers did not find mutations or other genetic alterations in the POLR3A gene in cancers from eight other scleroderma patients whose antibodies recognize different cellular targets. Overall, six of eight tumors from scleroderma patients with antibodies to RPC1 harbored genetic alterations affecting the POLR3A gene, while none of the tumors from scleroderma patients without RPC1 antibodies had these changes. Further, the relatively low fraction of cancer cells with these genetic alterations in the tumors from some of the patients with RPC1 antibodies also suggests that an immune response against the cancer had occurred, with cells containing these mutations selected against during tumor growth.

The researchers went on to show that the CD4+ T cell response in the patients with a mutated POLR3A gene was directed against the part of the protein that had been mutated and, in some patients had spread to the non-mutated form of the protein. One patient was found to have many T cells with different nucleic acid sequences recognizing the mutated amino acid sequence, indicating that the mutation was driving the immune response.

Other experiments showed that long-lived, immune B cell antibodies from patients with POLR3A mutations recognized RPC1 whether it was mutated or not, demonstrating that once triggered, the immune response is capable of attacking both cancerous and normal tissues.

The authors propose that in patients pre-disposed to autoimmunity, cancers harboring POLR3A mutations initiated scleroderma in most patients with the RPC1 form of the disease, but that in the majority of these patients, the immune response eradicates the cancer by the time scleroderma develops.

While this study provides new insight into disease initiation in scleroderma, "the generation of an autoreactive immune response alone may not be sufficient to generate the self-sustaining tissue injury seen in scleroderma, and additional factors (genetic, environmental, or target tissue-specific) may be required," says Rosen. He adds, "further studies are underway to understand the role of these additional factors in the development of scleroderma."

"This study is the first to show that mutation of a normal gene in a cancer can be the initiator of an autoimmune disease. This is a profound shift in our thinking about scleroderma," says Scleroderma Research Foundation Chairman and MPM Capital Managing Director, Luke Evnin, Ph.D. Patients with a short cancer-autoimmune disease interval have also been described for other autoimmune rheumatic diseases, such as myositis, vasculitis, and lupus. Evnin adds, "the biological mechanisms discovered here may, therefore, have relevance to disease initiation in other autoimmune diseases."

"Our study results could change the way many physicians evaluate and eventually treat autoimmune diseases like scleroderma," says Dr. Rosen. "Current treatment strategies that are focused on dampening down the immune response in scleroderma could instead be replaced by strategies aimed at finding, diagnosing and treating the underlying cancer," adds Rosen.

The impact of this study may be as important to cancer research as it is to autoimmune research," says Evnin. "This could be a way to begin to uncover natural anti-cancer mechanisms which have been difficult to visualize in humans."

Critical to this study were the clinical expertise, database and biorepository of Dr. Fredrick Wigley and his team at The Johns Hopkins Scleroderma Center of Excellence, one of the premier scleroderma centers in the United States, which the Scleroderma Research Foundation has supported since its inception.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos