Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein-Measurement Technique’s Could Standardize Quantification of the Human Proteome

Published: Wednesday, December 18, 2013
Last Updated: Wednesday, December 18, 2013
Bookmark and Share
Novel method could alleviate bottleneck in bringing cancer biomarkers to the clinic and increase reproducibility of pre-clinical research.

An international team of scientists led by Fred Hutchinson Cancer Research Center cancer proteomics expert Amanda Paulovich, M.D., has demonstrated the feasibility of large-scale, standardized protein measurements, which are necessary for validation of disease biomarkers and drug targets.

The study, to be published Dec. 8 online in the journal Nature Methods, shows that the scientists’ targeted protein-detection approach has the potential to systematically and reliably measure the entire human repertoire of proteins, known as the proteome.

The technique, developed by Paulovich, a member of Fred Hutch’s Clinical Research Division, and her colleagues, can simultaneously and precisely detect the abundance of hundreds of proteins in many different samples. Researchers from three different groups in Seattle, Boston and South Korea were able to reproduce measurements of 319 proteins from human breast cancer cells, showing that the method can be standardized across laboratory and international boundaries.

“This method has the potential to completely revolutionize how we measure human proteins,” Paulovich said. “Having a global resource for standardized quantification of all human proteins would set new standards that would undoubtedly increase the reproducibility of preclinical research, which would have a dramatic impact on the translation of novel therapeutics and diagnostics.”

Proteins, the molecular workhorses of all biological functions, hold the key to signaling early disease and disease progression. Cancer biomarkers are especially sought after – the protein fingerprints in cells could lead to tests to detect the disease earlier, to identify a person’s specific risk of cancer long before it develops, and to better guide patients’ treatments. But validating newly discovered biomarker candidates has proven impossible without standardized and reproducible methods to measure their levels, Paulovich said.

Each promising biomarker must be further studied in clinical trials, which requires researchers to measure the abundance of each candidate biomarker in hundreds to thousands of patient samples. Because the odds are extraordinarily low that any one candidate will translate to clinical use, large numbers of proteins must be tested to identify a clinically useful biomarker.

“Right now, you can’t make robust measurements of most human proteins,” Paulovich said. “More than 10 years after the human genome has been sequenced and we have the full catalog of molecules as important as proteins, we still can’t study the human proteome with any kind of throughput in a standardized, quantitative manner.”

To address this problem, Paulovich and her colleagues used a sensitive and targeted protein-measurement technology called multiple reaction monitoring mass spectrometry, or MRM-MS. This type of mass spectrometry is not new – it has been used for years in clinical laboratories worldwide to measure drug metabolites and small molecules associated with inborn errors of metabolism. More recently, Paulovich and others have begun using it to measure human proteins.

The researchers’ method enables highly specific, precise, multiplex (meaning the technique measures several different proteins in a single experimental assay) quantification of a minimum of 170 proteins in 20 clinical samples per instrument per day; no other existing technology has this power.

Because the mass spectrometry technique is targeted, meaning the researchers can tune the instruments to look for a specific subset of proteins in cancer cells or other sample types, it can detect the presence of proteins of interest at much lower levels in tiny blood samples or biopsies than a non-targeted tactic.

“The goal is to position this technology to displace some very old technologies that are currently being used,” said Jacob Kennedy, an analytical chemist in Paulovich’s group and lead author of the study.

Currently, researchers usually use either Western blotting, ELISA (enzyme-linked immunosorbent assay), or immunohistochemistry (IHC) techniques to measure levels of proteins in clinical samples. These methods are often not reproducible from laboratory to laboratory, rendering validation of candidate biomarkers for clinical use very difficult, and they cannot be used for large numbers of proteins and samples at once.

Paulovich and her colleagues assayed more than 300 proteins known to be produced by breast cancer cells to validate their technique; their results showed that MRM-MS could recapitulate and extend observations made in previous studies of breast cancer using other technologies.

The study, which included collaborating research groups from the Broad Institute in Cambridge, Mass., and the Seoul National University and Korea Institute of Science and Technology, South Korea, demonstrated MRM-MS’s capacity to measure many proteins at once in a standardized way, laying the foundation for an international, organized effort to quantitate every protein in the human proteome. Their study – the largest to demonstrate the technique’s reproducibility across laboratories and the only international study to do so – has pushed the capacity of the technology the farthest, measuring hundreds of protein pieces where others have measured dozens.

“We really showed what could happen if governments cooperated to build a community resource,” she said. “It’s doable, it’s scalable, and the resource is useful.”

Paulovich’s team hopes the technique catches on in research communities around the world. To facilitate this, her group is spearheading the development of an open-source website to create a centralized resource of highly validated assays for the research community. The portal, funded by the Clinical Proteomics Tumor Analysis Consortium Initiative (CPTAC) of the National Cancer Institute, is set to launch in early 2014.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!