Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Shows Where Alzheimer’s Starts and How It Spreads

Published: Tuesday, December 24, 2013
Last Updated: Tuesday, December 24, 2013
Bookmark and Share
The findings could improve early detection of the disease, when drugs may be most effective.

Using high-resolution functional MRI (fMRI) imaging in patients with Alzheimer’s disease and in mouse models of the disease, Columbia University Medical Center (CUMC) researchers have clarified three fundamental issues about Alzheimer’s: where it starts, why it starts there, and how it spreads. The study was published in the online edition of the journal Nature Neuroscience.

“It has been known for years that Alzheimer’s starts in a brain region known as the entorhinal cortex,” said co-senior author Scott A. Small, MD, Boris and Rose Katz Professor of Neurology, professor of radiology, and director of the Alzheimer’s Disease Research Center. “But this study is the first to show in living patients that it begins specifically in the lateral entorhinal cortex, or LEC. The LEC is considered to be a gateway to the hippocampus, which plays a key role in the consolidation of long-term memory, among other functions. If the LEC is affected, other aspects of the hippocampus will also be affected.”

The study also shows that, over time, Alzheimer’s spreads from the LEC directly to other areas of the cerebral cortex, in particular, the parietal cortex, a brain region involved in various functions, including spatial orientation and navigation. The researchers suspect that Alzheimer’s spreads “functionally,” that is, by compromising the function of neurons in the LEC, which then compromises the integrity of neurons in adjoining areas.

A third major finding of the study is that LEC dysfunction occurs when changes in tau and amyloid precursor protein (APP) co-exist. “The LEC is especially vulnerable to Alzheimer’s because it normally accumulates tau, which sensitizes the LEC to the accumulation of APP. Together, these two proteins damage neurons in the LEC, setting the stage for Alzheimer’s,” said co-senior author Karen E. Duff, PhD, professor of pathology and cell biology (in psychiatry and in the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain) at CUMC and at the New York State Psychiatric Institute.

In the study, the researchers used a high-resolution variant of fMRI to map metabolic defects in the brains of 96 adults enrolled in the Washington Heights-Inwood Columbia Aging Project (WHICAP). All of the adults were free of dementia at the time of enrollment.

“Dr. Richard Mayeux’s WHICAP study enables us to follow a large group of healthy elderly individuals, some of whom have gone on to develop Alzheimer’s disease,” said Dr. Small. “This study has given us a unique opportunity to image and characterize patients with Alzheimer’s in its earliest, preclinical stage.”

The 96 adults were followed for an average of 3.5 years, at which time 12 individuals were found to have progressed to mild Alzheimer’s disease. An analysis of the baseline fMRI images of those 12 individuals found significant decreases in cerebral blood volume (CBV) —  a measure of metabolic activity — in the LEC compared with that of the 84 adults who were free of dementia.

A second part of the study addressed the role of tau and APP in LEC dysfunction. While previous studies have suggested that entorhinal cortex dysfunction is associated with both tau and APP abnormalities, it was not known how these proteins interact to drive this dysfunction, particularly in preclinical Alzheimer’s.

To answer this question, explained first author Usman Khan, an MD-PhD student based in Dr. Small’s lab, the team created three mouse models, one with elevated levels of tau in the LEC, one with elevated levels of APP, and one with elevated levels of both proteins. The researchers found that the LEC dysfunction occurred only in the mice with both tau and APP.

The study has implications for both research and treatment. “Now that we’ve pinpointed where Alzheimer’s starts, and shown that those changes are observable using fMRI, we may be able to detect Alzheimer’s at its earliest preclinical stage, when the disease might be more treatable and before it spreads to other brain regions,” said Dr. Small. In addition, say the researchers, the new imaging method could be used to assess the efficacy of promising Alzheimer’s drugs during the disease’s early stages.

The paper is titled, “Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease.”  The other contributors are Li Liu, Frank Provenzano, Diego Berman, Caterina Profaci, Richard Sloan and Richard Mayeux, all at CUMC.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Long-term Memories Are Maintained by Prion-like Proteins
Research from Eric Kandel’s lab at Columbia University Medical Center has uncovered evidence of a system in the brain that persistently maintains memories for long periods of time.
Friday, July 03, 2015
Global Study Discovers Flurry of New Alzheimer’s Genes
An international study has uncovered 11 new genes that increase the chance of developing Alzheimer’s disease and provide new clues to ways of fighting it.
Wednesday, October 30, 2013
Test Could Identify Which Prostate Cancers Require Treatment
3-gene biomarker gauges tumor’s aggressiveness.
Thursday, September 12, 2013
Improper Protein Digestion in Neurons Identified as a Cause of Familial Parkinson’s
Researchers at CUMC and others have discovered how the most common genetic mutations in familial Parkinson’s disease damage brain cells.
Friday, March 08, 2013
Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!