Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Potential Therapeutic Target for Incurable, Rare Type of Soft-Tissue Cancer

Published: Friday, December 27, 2013
Last Updated: Thursday, December 26, 2013
Bookmark and Share
UT Southwestern scientists study published online in Cell Reports.

A deadly, rare type of soft-tissue cancer may be completely eradicated simply by inhibiting a key protein involved in its growth, UT Southwestern Medical Center researchers report.

In the study, published online in Cell Reports, scientists found that inhibiting the action of a protein called BRD4 caused cancer cells to die in a mouse model of malignant peripheral nerve sheath tumors (MPNSTs).

“This study identifies a potential new therapeutic target to combat MPNST, an incurable type of cancer that is typically fatal,” said Dr. Lu Le, Assistant Professor of Dermatology at UT Southwestern and senior author of the study. “The findings also provide important insight into what causes these tumors to develop.”

MPNSTs are highly aggressive sarcomas that form around nerves. These tumors can develop sporadically, but about half of cases are in patients with a genetic disorder called neurofibromatosis type 1 (NF1) that affects 1 in 3,500 people. About 10 percent of NF1 patients will develop MPNST, which usually evolves from a benign but often large and disfiguring tumor called a plexiform neurofibroma.

Up to now, the preferred treatment for MPNST has been surgical removal, but that oftentimes is difficult or impossible due to the tumor’s location around nerves. Radiation and chemotherapy are other options, but their effectiveness is limited. The five-year survival rate for MPNST patients is about 50 percent.

By studying changes in cells as they evolved into cancerous MPNSTs, researchers in Dr. Le’s laboratory were able to determine that BRD4, a bromodomain protein that binds to DNA to regulate gene activation, is expressed at an unusually high level in MPNST cancer cells.

This action caused another protein called BCL-2 to keep cancer cells from dying. Alternately, when researchers inhibited BRD4 either genetically in the mice or pharmacologically by administering a compound called JQ1, the tumors shrank.

“These treatments suppressed tumor growth and caused the cancer cells to undergo apoptosis, or cell death. This is why BRD4 inhibition is exquisitely effective against MPNSTs and may represent a paradigm shift in therapy for these patients,” Dr. Le said.

The same class of drug used in the experiments is currently being evaluated in phase 1 and 2 trials for treatment of leukemia and a subtype of lung cancer. Meanwhile, UT Southwestern is working with a pharmaceutical company to develop a similar BRD4-inhibiting drug to launch a clinical trial for MPNST patients.

New drugs are desperately needed to treat MPNST and provide hope to NF1 patients at highest risk for this cancer, said Dr. Le, who also serves as Co-director of UT Southwestern’s Comprehensive Neurofibromatosis Clinic. The clinic offers neurofibromatosis patients access to the latest clinical trials and treatments.

Co-directed by Dr. Laura Klesse, Assistant Professor of Pediatrics, the clinic is part of the Harold C. Simmons Comprehensive Cancer Center and serves patients with all three types of hereditary neurofibromatosis, including the dominant NF1 type and rarer NF2 and Schwannomatosis forms.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UTSW-led Study Establishes Biomarkers to Help Diagnose, Treat Psychosis
In this study, the Bipolar-Schizophrenia Network on Intermediate Phenotypes identified three neurobiologically distinct biotypes.
Saturday, December 12, 2015
Physiologists Uncover a New Code at the Heart of Biology
New “code” - the speed limit of assembly - dictate the ultimate function of a given protein.
Thursday, September 24, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Find New Mechanism That Controls Immune Responses
The findings appear online in the journal Science.
Friday, February 13, 2015
Protein Variant may Boost Cardiovascular Risk by Hindering Blood Vessel Repair
Researchers have found that apoE3 helps repair the lining of blood vessels.
Friday, September 19, 2014
UTSW Cancer Researchers Identify Irreversible Inhibitor for KRAS Gene Mutation
Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers.
Tuesday, July 29, 2014
UT Southwestern Researcher Selected for ASBMB Merck Award
Award recognizes Dr. Zhijian Chen’s outstanding contributions to research in biochemistry and molecular biology.
Friday, July 18, 2014
Cellular Force That Drives Allergy and Asthma Can be Blocked by Interferon
Type I interferons block the development of allergy- and asthma-driving Th2 cells.
Friday, June 20, 2014
Proteins Causing Daytime Sleepiness Also Tied to Bone Formation
Orexin proteins provide target for osteoporosis, UT Southwestern researchers find.
Saturday, June 14, 2014
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!