Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

High Good and Low Bad Cholesterol Levels are Healthy for the Brain

Published: Friday, January 03, 2014
Last Updated: Friday, January 03, 2014
Bookmark and Share
Study suggests a potential new approach to lowering the prevalence of Alzheimer's disease.

High levels of “good” cholesterol and low levels of “bad” cholesterol are correlated with lower levels of the amyloid plaque deposition in the brain that is a hallmark of Alzheimer’s disease, in a pattern that mirrors the relationship between good and bad cholesterol in cardiovascular disease, UC Davis researchers have found.

 “Our study shows that both higher levels of HDL — good — and lower levels of LDL — bad — cholesterol in the bloodstream are associated with lower levels of amyloid plaque deposits in the brain," said Bruce Reed, lead study author and associate director of the UC Davis Alzheimer’s Disease Center. 

“Unhealthy patterns of cholesterol could be directly causing the higher levels of amyloid known to contribute to Alzheimer’s, in the same way that such patterns promote heart disease,” he said.

The relationship between elevated cholesterol and increased risk of Alzheimer’s disease has been known for some time, but the current study is the first to specifically link cholesterol to amyloid deposits in living human study participants, Reed said.

The study, “Associations Between Serum Cholesterol Levels and Cerebral Amyloidosis,” is published online today in JAMA Neurology.

In the United States, cholesterol levels are measured in milligrams (mg) of cholesterol per deciliter (dL) of blood. For HDL cholesterol, a level of 60 mg/dl or higher is best. For LDL cholesterol, a level of 70 mg/dL or lower is recommended for people at very high risk of heart disease.

Charles DeCarli, director of the Alzheimer’s Disease Center and an author of the study, said it is a wake-up call that, just as people can influence their late-life brain health by limiting vascular brain injury through controlling their blood pressure, the same is true of getting a handle on their serum cholesterol levels.

“If you have an LDL above 100 or an HDL that is less than 40, even if you’re taking a statin drug, you want to make sure that you are getting those numbers into alignment,” DeCarli said. “You have to get the HDL up and the LDL down.”

The study was conducted in 74 diverse male and female individuals 70 years and older who were recruited from California stroke clinics, support groups, senior facilities and the Alzheimer’s Disease Center. They included three individuals with mild dementia, 33 who were cognitively normal and 38 who had mild cognitive impairment.

The participants’ amyloid levels were obtained using a tracer that binds with amyloid plaques and imaging their brains using PET scans. Higher fasting levels of LDL and lower levels of HDL both were associated with greater brain amyloid — a first-time finding linking cholesterol fractions in the blood and amyloid deposition in the brain. The researchers did not study the mechanism for how cholesterol promotes amyloid deposits.

Recent guidelines instituted by the American College of Cardiology, the American Heart Association and the National Heart, Lung, and Blood Institute have suggested abandoning guidelines for LDL targets. Reed said that recommendation may be an instance in which the adage that “what’s good for the heart is good for the brain” does not apply.

“This study provides a reason to certainly continue cholesterol treatment in people who are developing memory loss, regardless of concerns regarding their cardiovascular health," said Reed, a professor in the UC Davis Department of Neurology.

“It also suggests a method of lowering amyloid levels in people who are middle aged, when such build-up is just starting," he said. "If modifying cholesterol levels in the brain early in life turns out to reduce amyloid deposits late in life, we could potentially make a significant difference in reducing the prevalence of Alzheimer’s, a goal of an enormous amount of research and drug development effort.”

The study’s other authors are Sylvia Villeneuve and William Jagust of UC Berkeley and Wendy Mack and Helena C. Chui of the University of Southern California.

The research was supported by grants P01 AG12435, AG034570 and P30 AG10129 from the National Institute on Aging of the National Institutes of Health. Villeneuve received support from the Canadian Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Milk Protein Comparison Unveils Nutritional Gems For Developing Babies
The study revealed the first comprehensive macaque milk proteome and newly identified 524 human milk proteins.
Tuesday, March 17, 2015
New DNA Repair Pathway
UC Davis researchers have found a new pathway for repairing DNA damaged by oxygen radicals. The results are published this week in the journal Proceedings of the National Academy of Sciences.
Monday, November 08, 2010
Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos