Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Agilis and Intrexon Collaborate on Rare Diseases

Published: Friday, January 03, 2014
Last Updated: Friday, January 03, 2014
Bookmark and Share
Companies announce exclusive channel collaboration (ECC) to develop DNA-based therapeutics for Friedreich's ataxia (FRDA), a rare genetic neurodegenerative disease.

Agilis and Intrexon expect DNA-based therapeutics to provide the ability to target underlying disease mechanisms with precision using tightly-controlled gene therapies for patients with rare inherited diseases such as FRDA.  Current FRDA therapies are primarily focused on supportive care and symptom relief.  There are no FDA-approved treatment options to address the cause of FRDA.

The technical core of Agilis' novel DNA-based therapeutics will utilize Intrexon's UltraVector® platform and RheoSwitch Therapeutic System® (RTS®) to develop gene therapies and genetically-modified cell therapies for treating FRDA. The ECC's planned approach to target FRDA will employ RTS®, a clinically validated inducible gene switch technology that regulates the expression of therapeutic proteins or bioactive RNA in a dose-dependent fashion.

FRDA is an inherited disease caused by a gene mutation that reduces the expression of frataxin, a protein localized in the "power center" of cells known as the mitochondria, and results in a physically debilitating, life-shortening condition.  Progression of the disease causes nervous system damage, problems with movement and early death most often caused by cardiac malfunction.   FRDA is the most common hereditary ataxia with an estimated 5,000 to 10,000 patients in the United States.   

The goal of the ECC is to develop DNA-based therapeutics to repair or replace the "broken" gene in FRDA and enable increased production of the frataxin protein to alleviate the downstream effects of frataxin deficiency. The combination of gene correction with additional therapeutic modulators in a multigenic approach has the potential to create a potent treatment.  This treatment is expected to further improve cardiovascular and neurological function by addressing the underlying causes of FRDA and associated symptoms.  Agilis also has an option to advance a second undisclosed rare disease indication.

"We are thrilled to be working with Intrexon with the hope of providing children and adults affected with rare genetic disorders with promising new treatments," said George S. Zorich, Chief Executive Officer of Agilis Biotherapeutics.  "We believe Agilis is on the forefront of one of the most promising treatment breakthroughs for Friedreich's ataxia. I am personally excited to collaborate with the Intrexon team and look forward to developing new transformative therapies together."

Samuel Broder, M.D., Senior Vice President of Intrexon's Health Sector and former Director of the National Cancer Institute, said, "FRDA causes heart failure and progressive neurological deterioration, which in turn cause suffering and premature deaths.  The goal of this collaboration is to harnessIntrexon's proprietary technologies in synthetic DNA, as well as our expertise in molecular, protein, and cellular engineering, to benefit patients with this very serious disorder." 

Intrexon Founder and Chief Science Officer Thomas Reed, Ph.D., remarked that unlike some biotechnology companies which are limited to single classes of therapeutic molecules or gene delivery systems, Intrexon is equipped to pursue several different therapeutic approaches for treating the complexities associated with FRDA. 

"As an inventor and integrator of technology platforms, we will make use of our UltraVector® multi-gene engineering, RTS® gene switch, advanced Protein Engineering, and other platforms to develop therapeutic candidates designed to treat both the neurological and the cardiovascular pathologies of FRDA.  We are confident that our ability to pursue multiple approaches for treating this complex disease will significantly increase our probability of success.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!