Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Clues to How Bacteria Evade Antibiotics

Published: Friday, January 10, 2014
Last Updated: Friday, January 10, 2014
Bookmark and Share
Scientists have made an important advance in understanding how a subset of bacterial cells escape being killed by many antibiotics.

Cells become "persisters" by entering a state in which they stop replicating and are able to tolerate antibiotics. Unlike antibiotic resistance, which arises because of genetic mutations and is passed on to later generations, this tolerant phase is only temporary, but it may contribute to the later development of resistance.

In a new study in the journal Science, researchers from the MRC Centre for Molecular Bacteriology and Infection at Imperial College London have succeeded in visualising persister cells in infected tissues for the first time, and have identified signals that lead to their formation.

Virtually all bacterial species form subpopulations of persisters that are tolerant to many antibiotics. Persisters are likely to be a cause of many recurrent infections, but little is known about how they arise.

The team developed a method for tracking single cells using a fluorescent protein produced by the bacteria. They showed that Salmonella, which causes gastroenteritis and typhoid fever, forms large numbers of non-replicating persisters after being engulfed by immune cells called macrophages. By adopting this non-replicating mode, Salmonella survives antibiotic treatment and lingers in the host, accounting for its ability to cause recurrent infections.

The researchers also identified factors produced by human cells that trigger bacteria to become persisters.

One of the lead authors, Dr Sophie Helaine, said: "We rely on antibiotics to defend us against common bacterial infections like tuberculosis, cystitis, tonsillitis and typhoid, but a few cells can escape treatment by becoming persisters, which allows the infection to come back. This is a big problem in itself, but it also makes it more likely that antibiotic resistance will arise and spread.

"Now we know the molecular pathways and mechanisms that lead to persister formation during infection, we can work on screening for new drugs to coax them out of this state so that they become vulnerable to antibiotics." 

The other lead author, Professor David Holden, Director of the MRC Centre for Molecular Bacteriology and Infection at Imperial College London, said: "One of the most striking findings in this work is that conditions inside immune cells activate two different responses from Salmonella, causing some bacteria to replicate and others to enter a non-replicating persister state. Activating these two responses together is likely to be an important mechanism by which Salmonella survives during infection." 

The research was supported by an Imperial College London Junior Research Fellowship, the Wellcome Trust and the Medical Research Council.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovery of Trigger for Bugs’ Defences Could Lead to New Antibiotics
New research shows that sigma54 holds a bacterium’s defences back until it encounters stress.
Friday, August 21, 2015
Breakthrough Could Lead to New Antibiotics
Scientists have exposed a chink in the armour of disease-causing bugs, with a new discovery about a protein that controls bacterial defences.
Friday, August 21, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
Protein That Boosts Immunity to Viruses and Cancer Discovered
Researchers now developing a gene therapy designed to boost the infection-fighting cells.
Saturday, April 18, 2015
Biomarker Discovery Sheds New Light on Heart Attack Risk of Arthritis Drugs
Drug may be given a new lease of life.
Thursday, December 11, 2014
First Pictures of BRCA2 Protein Show How it Works to Repair DNA
Researchers purified the protein and used electron microscopy to reveal its structure.
Thursday, October 09, 2014
Protein ‘Map’ Could Lead to Potent New Cancer Drugs
Findings will help scientists to design drugs that could target NMT enzyme.
Saturday, September 27, 2014
New Developments in Big, Open Access Data for Dementia
Prime Minister, David Cameron, pledged a UK commitment to discover new drugs and treatment that could slow down the on-set of dementia or even deliver a cure by 2025.
Thursday, June 19, 2014
New Discovery Gives Hope that Nerves Could be Repaired After Spinal Cord Injury
Research highlights the role of a protein called P300/CBP-associated factor.
Tuesday, April 08, 2014
Scientists Design Protein to Prevent Prostate Cancer Cell Growth
New protein blocks the hormone receptors and consequently stops cancer cells from growing in the laboratory.
Thursday, January 30, 2014
Designer Protein to Prevent Prostate Cancer Cell Growth
Researchers are creating a "designer" protein that could be effective at treating prostate cancer when other therapies fail.
Friday, January 17, 2014
Cosmic Factory for Making Building Blocks of Life
Research published in the journal Nature Geoscience details the discovery of a 'cosmic factory' for producing amino acids.
Monday, September 16, 2013
Scientists Develop Tools to Make More Complex Biological Machines from Yeast
Researchers have demonstrated way of creating a new type of biological "wire", using proteins that interact with DNA.
Monday, March 19, 2012
"Popeye" Proteins Help the Heart Adapt to Stress
Study help scientists to develop new treatments for abnormal heart rhythms.
Tuesday, February 21, 2012
Faulty Molecular Switch Can Cause Infertility or Miscarriage
ICL researchers discovered that womb lining in women with unexplained infertility had high levels of the enzyme SGK1.
Tuesday, October 18, 2011
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!