Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Imaging Technique Captures Protein Vibrations

Published: Friday, January 17, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
Using a technique based on terahertz near-field microscopy scientists have for the first time observed in detail the vibrations of lysozyme.

Like the strings on a violin or the pipes of an organ, the proteins in the human body vibrate in different patterns, scientists have long suspected.

Now, a new study provides what researchers say is the first conclusive evidence that this is true.

The team found that the vibrations, which were previously thought to dissipate quickly, actually persist in molecules like the “ringing of a bell,” says UB physics professor Andrea Markelz, wh0 led the study.

These tiny motions enable proteins to change shape quickly so they can readily bind to other proteins, a process that is necessary for the body to perform critical biological functions like absorbing oxygen, repairing cells and replicating DNA, Markelz says.

The research opens the door to a whole new way of studying the basic cellular processes that enable life.

“People have been trying to measure these vibrations in proteins for many, many years, since the 1960s,” Markelz says. “In the past, to look at these large-scale, correlated motions in proteins was a challenge that required extremely dry and cold environments and expensive facilities.

“Our technique is easier and much faster,” she says “You don’t need to cool the proteins to below freezing or use a synchrotron light source or a nuclear reactor — all things people have used previously to try and examine these vibrations.”

The findings appear in Nature Communications.

To observe the protein vibrations, Markelz’ team relied on an interesting characteristic of proteins: the fact that they vibrate at the same frequency as the light they absorb.

This is analogous to the way wine glasses tremble and shatter when a singer hits exactly the right note. Markelz explains: Wine glasses vibrate because they are absorbing the energy of sound waves, and the shape of a glass determines what pitches of sound it can absorb. Similarly, proteins with different structures will absorb and vibrate in response to light of different frequencies.

So, to study vibrations in lysozyme, Markelz and her colleagues exposed a sample to light of different frequencies and polarizations, and measured the types of light the protein absorbed.

This technique, developed with Edward Snell, a senior research scientist at HWI and assistant professor of structural biology at UB, allowed the team to identify which sections of the protein vibrated under normal biological conditions. The researchers also were able to see that the vibrations endured over time, challenging existing assumptions.

“If you tap on a bell, it rings for some time and with a sound that is specific to the bell. This is how the proteins behave,” Markelz says. “Many scientists have previously thought a protein is more like a wet sponge than a bell: If you tap on a wet sponge, you don’t get any sustained sound.”

Markelz says the team’s technique for studying vibrations could be used in the future to document how natural and artificial inhibitors stop proteins from performing vital functions by blocking desired vibrations.

“We can now try to understand the actual structural mechanisms behind these biological processes and how they are controlled,” she says.

“The cellular system is just amazing. You can think of a cell as a little machine that does lots of different things — it senses, it makes more of itself, it reads and replicates DNA, and for all of these things to occur, proteins have to vibrate and interact with one another.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Brain Equation: Subtract Protein, Generate Myelin-Making Cells
A new way to generate oligodendrocytes has potential to enhance treatments for brain injury, MS, Alzheimer’s and more.
Thursday, August 20, 2015
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!