Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Protein to Repair Damaged Brain Tissue in MS

Published: Monday, February 10, 2014
Last Updated: Monday, February 10, 2014
Bookmark and Share
Potentially novel therapeutic target could reduce the rate of deterioration and promote growth of brain cells.

Vittorio Gallo, PhD, Director of the Center for Neuroscience Research at Children’s National Health System, and other researchers have found a “potentially novel therapeutic target” to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis (MS).  Current therapies can be effective in patients with relapsing MS, but have little impact in promoting tissue growth.

The brain produces new cells to repair the damage from MS years after symptoms appear.  However, in most cases the cells are unable to complete the repair, as unknown factors limit this process. In MS patients, brain inflammation in random patches, or lesions, leads to destruction of myelin, the fatty covering that insulates nerve cell fibers called axons in the brain, and aids in transmission of signals to other neurons.

In yesterday’s publication of Neuron, Gallo, who also is a professor of pediatrics at the George Washington University School of Medicine and Health Sciences (SMHS), reported identifying a small protein that can be targeted to promote repair of damaged tissue, with therapeutic potential.  The molecule, Endothelin-1 (ET-1), is shown to inhibit repair of myelin. Myelin damage is a hallmark characteristic of MS. The study demonstrates that blocking ET-1 pharmacologically or using a genetic approach could promote myelin repair.

Repair of damaged MS plaques is carried out by endogenous oliogdendrocytle progenitor cells (OPCs) in a process called remyelination. Current MS therapy can be effective in patients with relapsing and remitting MS, but “have little impact in promoting remyelination in tissue,” Gallo said. Several studies have shown that OPCs fail to differentiate in chronic MS lesions.

Targeting ET-1 is a process that involves identifying signals in cells that could promote lesion repair. “We demonstrate that ET-1 drastically reduces the rate of remyelination,” Gallo said. As such, ET-1 is “potentially a therapeutic target to promote lesion repair in deymyelinated tissue.”  It could play a “crucial role in preventing normal myelination in MS and in other demyelinating diseases,” Gallo said.

Timothy Hammond, PhD candidate at SMHS, and Ana Gadea, both at the Center for Neuroscience Research at Children’s National Health System, contributed to this research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Grant to Fund Million Peaks Project
The European Research Council (ERC) has awarded a prestigious Advanced Grant to Prof. Peter Schoenmakers, Prof. Albert Polman and Prof. Huib Bakker, all three of whom work at the University of Amsterdam (UvA).
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!