Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Identifies Protein to Repair Damaged Brain Tissue in MS

Published: Monday, February 10, 2014
Last Updated: Monday, February 10, 2014
Bookmark and Share
Potentially novel therapeutic target could reduce the rate of deterioration and promote growth of brain cells.

Vittorio Gallo, PhD, Director of the Center for Neuroscience Research at Children’s National Health System, and other researchers have found a “potentially novel therapeutic target” to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis (MS).  Current therapies can be effective in patients with relapsing MS, but have little impact in promoting tissue growth.

The brain produces new cells to repair the damage from MS years after symptoms appear.  However, in most cases the cells are unable to complete the repair, as unknown factors limit this process. In MS patients, brain inflammation in random patches, or lesions, leads to destruction of myelin, the fatty covering that insulates nerve cell fibers called axons in the brain, and aids in transmission of signals to other neurons.

In yesterday’s publication of Neuron, Gallo, who also is a professor of pediatrics at the George Washington University School of Medicine and Health Sciences (SMHS), reported identifying a small protein that can be targeted to promote repair of damaged tissue, with therapeutic potential.  The molecule, Endothelin-1 (ET-1), is shown to inhibit repair of myelin. Myelin damage is a hallmark characteristic of MS. The study demonstrates that blocking ET-1 pharmacologically or using a genetic approach could promote myelin repair.

Repair of damaged MS plaques is carried out by endogenous oliogdendrocytle progenitor cells (OPCs) in a process called remyelination. Current MS therapy can be effective in patients with relapsing and remitting MS, but “have little impact in promoting remyelination in tissue,” Gallo said. Several studies have shown that OPCs fail to differentiate in chronic MS lesions.

Targeting ET-1 is a process that involves identifying signals in cells that could promote lesion repair. “We demonstrate that ET-1 drastically reduces the rate of remyelination,” Gallo said. As such, ET-1 is “potentially a therapeutic target to promote lesion repair in deymyelinated tissue.”  It could play a “crucial role in preventing normal myelination in MS and in other demyelinating diseases,” Gallo said.

Timothy Hammond, PhD candidate at SMHS, and Ana Gadea, both at the Center for Neuroscience Research at Children’s National Health System, contributed to this research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos