Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Biology Mystery Unravelled

Published: Saturday, February 22, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Machinery responsible for the entry of proteins into cell membranes.

The nature of the machinery responsible for the entry of proteins into cell membranes has been unravelled by BBSRC-funded scientists, who hope the breakthrough could be exploited for the design of new anti-bacterial drugs.

Groups of researchers from the University of Bristol and the European Molecular Biology Laboratory (EMBL) used new genetic engineering technologies to reconstruct and isolate the cell's protein trafficking machinery. Its analysis has shed new light on a process which had previously been a mystery for molecular biologists.

The findings, published in the Proceedings of the National Academy of Sciences (PNAS), could also have applications for synthetic biology - an emerging field of science and technology, for the development of novel membrane proteins with useful activities.

Proteins are the building blocks of all life and are essential for the growth of cells and tissue repair. The proteins in the membrane typically help the cell interact with its environment and conserve energy.

Researchers were able to identify the 'holo-translocon' as the machinery which inserts proteins into the membrane. It is a large membrane protein complex and is uniquely capable of both protein-secretion and membrane-insertion.

Professor Ian Collinson, from the School of Biochemistry at Bristol University said: "These findings are important as they address outstanding questions in one of the central pillars of biology, a process essential in every cell in every organism. Having unravelled how this vital holo-translocon works, we're now in a position to look at its components to see if they can help in the design or screening for new anti-bacterial drugs."

The discovery is a result of an international collaboration between the University of Bristol team and Drs Christiane Schaffitzel and Imre Berger of the European Molecular Biology Laboratory (EMBL) outstation in Grenoble, France.

The work was funded in Bristol by BBSRC through a project grant and a doctoral training programme.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Findings Could Influence the Development of Therapies to Treat Dengue Disease
New research into the fight against Dengue may influence the development of anti-viral therapies that are effective against all four types of the virus.
Monday, August 05, 2013
Protecting Genes, One Molecule at a Time
An international team of scientists have shown at an unprecedented level of detail how cells prioritise the repair of genes containing potentially dangerous damage.
Tuesday, September 11, 2012
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!