Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Underlying Genetics and Marker For Stroke Discovered

Published: Friday, March 21, 2014
Last Updated: Friday, March 21, 2014
Bookmark and Share
NIH-funded findings point to new potential strategies for disease prevention, treatment.

Scientists studying the genomes of nearly 5,000 people have pinpointed a genetic variant tied to an increased risk for stroke, and have also uncovered new details about an important metabolic pathway that plays a major role in several common diseases. Together, their findings may provide new clues to underlying genetic and biochemical influences in the development of stroke and cardiovascular disease, and may also help lead to new treatment strategies. 

"Our findings have the potential to identify new targets in the prevention and treatment of stroke, cardiovascular disease and many other common diseases," said Stephen R. Williams, Ph.D., a postdoctoral fellow at the University of Virginia Cardiovascular Research Center and the University of Virginia Center for Public Health Genomics, Charlottesville. 

Dr. Williams, Michele Sale, Ph.D., associate professor of medicine, Brad Worrall, M.D., professor of neurology and public health sciences, all at the University of Virginia, and their team reported their findings March 20, 2014 in PLoS Genetics. The investigators were supported by the National Human Genome Research Institute (NHGRI) Genomics and Randomized Trials Network (GARNET) program.

Stroke is the fourth leading cause of death and a major cause of adult disability in this country, yet its underlying genetics have been difficult to understand. Numerous genetic and environmental factors can contribute to a person having a stroke. "Our goals were to break down the risk factors for stroke," Dr. Williams said. 

The researchers focused on one particular biochemical pathway called the folate one-carbon metabolism (FOCM) pathway. They knew that abnormally high blood levels of the amino acid homocysteine are associated with an increased risk of common diseases such as stroke, cardiovascular disease and dementia. Homocysteine is a breakdown product of methionine, which is part of the FOCM pathway. The same pathway can affect many important cellular processes, including the methylation of proteins, DNA and RNA. DNA methylation is a mechanism that cells use to control which genes are turned on and off, and when. 

But clinical trials of homocysteine-lowering therapies have not prevented disease, and the genetics underlying high homocysteine levels -- and methionine metabolism gone awry -- are not well defined. 

Dr. Williams and his colleagues conducted genome-wide association studies of participants from two large long-term projects: the Vitamin Intervention for Stroke Prevention (VISP), a trial looking at ways to prevent a second ischemic stroke, and the Framingham Heart Study (FHS), which has followed the cardiovascular health and disease in a general population for decades. They also measured methionine metabolism - the ability to convert methionine to homocysteine - in both groups. In all, they studied 2,100 VISP participants and 2,710 FHS subjects. 

In a genome-wide association study, researchers scan the genome to identify specific genomic variants associated with a disease. In this case, the scientists were trying to identify variants associated with a trait -- the ability to metabolize methionine into homocysteine.  

Investigators identified variants in five genes in the FOCM pathway that were associated with differences in a person's ability to convert methionine to homocysteine. They found that among the five genes, one -- the ALDH1L1 gene -- was also strongly associated with stroke in the Framingham study. When the gene is not working properly, it has been associated with a breakdown in a normal cellular process called programmed cell death, and cancer cell survival. 

They also made important discoveries about the methionine-homocysteine process. "GNMT produces a protein that converts methionine to homocysteine. Of the five genes that we identified, it was the one most significantly associated with this process," Dr. Williams said. "The analyses suggest that differences in GNMT are the major drivers behind the differences in methionine metabolism in humans." 

"It's striking that the genes are in the same pathway, so we know that the genomic variants affecting that pathway contribute to the variability in disease and risk that we're seeing," he said. "We may have found how genetic information controls the regulation of GNMT."  

The group determined that the five genes accounted for 6 percent of the difference in individuals' ability to process methionine into homocysteine among those in the VISP trial. The genes also accounted for 13 percent of the difference in those participants in the FHS, a remarkable result given the complex nature of methionine metabolism and its impact on cerebrovascular risk. In many complex diseases, genomic variants often account for less than 5 percent of such differences. 

"This is a great example of the kinds of successful research efforts coming out of the GARNET program," said program director Ebony Madden, Ph.D. "GARNET scientists aim to identify variants that affect treatment response by doing association studies in randomized trials. These results show that variants in genes are associated with the differences in homocysteine levels in individuals."

The association of the ALDH1L1 gene variant with stroke is just one example of how the findings may potentially lead to new prevention efforts, and help develop new targets for treating stroke and heart disease, Dr. Williams said. 

"As genome sequencing becomes more widespread, clinicians may be able to determine if a person's risk for abnormally high levels of homocysteine is elevated," he said. "Changes could be made to an individual's diet because of a greater risk for stroke and cardiovascular disease." 

The investigators plan to study the other four genes in the pathway to try to better understand their potential roles in stroke and cardiovascular disease risk.

In addition to NHGRI, the research was supported by funds from the National Heart, Lung and Blood Institute, the National Institute of Neurological Disorders and Stroke, the National Institute on Aging and the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
New Imaging Technique in Alzheimer’s Disease
Study confirms new imaging technique corresponds a higher degree of actual brain changes.
Ancient Eggshell Protein Breaks Through DNA Time Barrier
Fossil proteins from a 3.8million year-old eggshell have been identifed, suggests proteins could give insight into evolutionary tree.
New Weapon Against Hard-to-Treat Bacterial Infections
Using peptides, researchers have been able to prevent drug-resistance bacteria from forming abscesses.
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Gene Deletion Reveals Cell Secrets
Researchers have deleted 174 genes in yeast to analyse the effect of individual gene deletion.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!