Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Insight into the Transport Systems of Cells

Published: Monday, March 24, 2014
Last Updated: Monday, March 24, 2014
Bookmark and Share
The insights into the basic operation of cells was achieved using a combination of advanced live-cell imaging, molecular genetics and quantitative analysis.

Research led by Gero Steinberg, Professor of Cell Biology and Director of the Bioimaging Centre at the University of Exeter, features in both the latest editions of the Journal of Cell Biology 

Professor Steinberg and his colleagues have investigated how cells undertake long range transport within polarised cells, such as those in the nervous system of humans.  Speaking about the research, Professor Steinberg said “ We want to understand how cells can transport and distribute cargo within cells.  This is vital if we are to understand how nerve cells operate, for instance, or how pathogenic fungi are able to cause diseases".

Cells have transport networks composed of long microtubules that act like motorways for long distance transport, which uses special motor proteins to delivery cargo to different parts of cells, such as the nucleus, organelles, or for secretion outside of a cell.  Prof. Steinberg has used the model fungusUstilago mayidis to identify the how motor proteins are regulated so they can carry out transport in opposite directions along microtubules. 

In the latest article, the researchers found that a special protein called ‘Hook’ controls the attachment of two different motors, dynein and kinesin-3, to cargo, thereby controlling the transport direction of the organelles. Hook proteins have previously been implicated in numerous human diseases, but the reason for this was unknown.  The Exeter research now reveals why they are so important in the operation of neurons and cells within the brain.

Speaking about the research, Professor Nick Talbot, Deputy Vice-Chancellor for Research said: “This research is impressive because it integrates the latest advances in bio-imaging so we can look at the operation of motor proteins in living cells in un-paralleled detail.  Prof. Steinberg’s group then collaborate with mathematicians to model the movement and activity of these motors and their key regulators, such as Hook.  It is this combination of skills which allows such important and fundamental new discoveries to be made.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
IU Research Reveals Link between Molecular Mechanisms in Prostate Cancer and Ewing's sarcoma
Researchers at IU have suggested that the molecular mechanism that triggers the rare disease Ewing's sarcoma could act as a potential new direction for the treatment of more than half of patients with prostate cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Advances in Alzheimer’s Research
Researchers show how a diseased vertebrate brain can naturally react to Alzheimer’s pathology by forming more neurons.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos