Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Industry-Sponsored Academic Inventions Spur Increased Innovation

Published: Monday, March 24, 2014
Last Updated: Monday, March 24, 2014
Bookmark and Share
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.

Industry-sponsored, academic research leads to innovative patents and licenses, says a new analysis led by Brian Wright, University of California, Berkeley professor of agricultural and resource economics.

The analysis, based on a study of two decades of records from the University of California system, is in today's science journal Nature.

The National Science Foundation's Directorate for Social, Behavioral and Economic Sciences funded the study. "There are two potential interpretations of the report," said Joshua Rosenbloom, program director for Science of Science and Innovation Policy (SciSIP). "One is optimistic. Corporate funding leads to research that is more likely to be commercialized and this greater focus is good.

"The second reading is that corporate funding shifts the focus of research away from basic science," added Rosenbloom.

During the last few decades, the share of gross domestic product supporting research and development has been stable, but the corporate share has increased substantially. "This may reflect a shift in emphasis away from basic science discoveries that provide a basis for future commercialization," Rosenbloom said.

SciSIP supports interdisciplinary social science research that builds an evidence base for informed policy choices and contributes to a better understanding of the interactions between science, technology and innovation.

The commentary's authors analyzed 12,516 inventions and related licenses at nine University of California campuses and three associated national laboratories. The inventions were disclosed between 1990 and 2005, and licensing activity was analyzed through 2010. Of the inventions, nearly 1,500 were supported at least partly by private industry.

The analysis found that industry-funded inventions yielded patents and licenses more frequently than federally sponsored ones, with results consistent across technical fields. The researchers also found that industry-sponsored inventions were more highly cited in subsequent patent applications--known as "forward citations"--the most widely used marker of a patent's quality and importance. Each corporate-sponsored invention generated an average of 12.8 forward citations compared with 5.6 for federally sponsored inventions.

"This runs counter to the expectation that corporate-sponsored inventions have narrow applications, and so create ... few benefits for others," the authors wrote.

Locking up inventions for profit?
Because corporations usually get first crack at negotiating licenses to the inventions they sponsor, there is an assumption that corporations tie up innovative discoveries in a way that restricts access to a broader audience.

However, the intellectual property data analyzed by the authors indicate that industry has not been more likely than federally sponsored research to tie up research discoveries in exclusive licenses. Overall, corporate-funded inventions were licensed exclusively 74 percent of the time, while federally funded inventions were licensed exclusively 76 percent of the time. Notably, among the corporate-funded inventions with exclusive licenses, half seemed to go to third parties and not the sponsor.

"We didn't expect these results," said Wright. "We thought companies would be interested in applied research that was closer to being products, and thus more likely to be licensed exclusively and less cited than federally funded counterparts, but that did not turn out to be the case."

The authors acknowledged that they might not have identified all third party licensees that were actually affiliated with the original corporate sponsor, but Wright said this does not affect the finding that licenses to corporate-funded inventions are not more likely to be exclusive.

"Industry-funded research need not be locked up by corporate sponsors if both the sponsored research office and the tech transfer office take care in protecting and marketing the results," said co-author Stephen Merrill, executive director of Science, Technology and Economic Policy at The National Academies.

Vigilance still needed
The authors of the new Nature paper said their findings should not be used to relax oversight over industry funding, particularly when it comes to trials of products rather than the invention disclosures covered in their analysis.

"The tobacco, food, pharmaceutical and other industries have been shown to manipulate research questions and public discourse for their benefit, and even to suppress unfavorable research," the study authors wrote.

The new analysis also covered only one university system, and it "may not be typical of all academia," said Wright. He added that the University of California system's strong reputation for basic research gives its tech transfer offices more pull when drawing up contracts.

During the 20-year period analyzed in the paper, University of California campuses accounted for up to 9 percent of total U.S. academic research expenditure, and it collectively obtained more issued patents than any other U.S. academic institution. Tech transfer offices at small universities may benefit by pooling resources to increase their negotiating power, said Wright.

The authors of the Nature paper concluded that while universities should remain vigilant when setting up contracts with corporations, "they should not assume companies are focused mainly on tying up intellectual property."

The other co-authors on the paper are Kyriakos Drivas, a postdoctoral research economist at the Agricultural University of Athens, and Zhen Lei, an assistant professor of energy and environmental economics at Pennsylvania State University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Structure of Key Pain-Related Protein Unveiled
In a technical tour de force, scientists have determined, at near-atomic resolution, the structure of a protein that plays a central role in the perception of pain and heat.
Friday, December 06, 2013
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Cell Growth Discovery Has Implications for Targeting Cancer
The way cells divide to form new cells is controlled in previously unsuspected ways.
Monday, October 21, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Effects of Parkinson’s Disease Mutation Reversed in Cells
UCSF study used chemical commonly found in anti-wrinkle cream.
Friday, August 23, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!