Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Breakthrough Profiling Technology to Improve Cancer Treatment on a Personalized Basis

Published: Saturday, April 12, 2014
Last Updated: Saturday, April 12, 2014
Bookmark and Share
New research paper published in the peer reviewed journal PLOS ONE.

The possibility of patients with pancreatic cancer being able to have their cancer tissue ‘profiled’ to understand how they will react to different treatments before they are given to them has moved a lot closer, a new research paper shows, published in the peer reviewed journal PLOS ONE.

This will enable more accurate profiling and the best drug selection for each individual. Trials are being planned to undertake the final stage of the process.

A recent study by UK Biosciences company, Proteome Sciences plc, in collaboration with leading academic partners King’s College Hospital, Imperial College London and the University of Cardiff, has shown this new method of analysis, using a system known as ‘SysQuant’ developed by Proteome Sciences, can unravel the chain of complex molecular activity that leads to and propagates cancer and be used to accurately predict how specific drug treatments will affect different patients with pancreatic cancer.

This new technique, which does not increase the overall cost of treatment, will provide doctors with information that will allow them to select which therapy will best work on an individual patient using existing medicines, something which to date has not been possible to achieve in most types of cancer. The researchers hope this will soon be applied across all cancers.

In the study, tumour, or cancerous tissue from 12 pancreatic cancer patients was analyzed involving over 2,100 proteins and 6,284 unique phosphorylation sites (which are common in modulating the activity of cancer suppressing proteins) being surveyed in each sample.

Commenting on this study, Professor Nigel Heaton, Professor of ‎Professor of Liver Transplant, Hepatobiliary and Pancreatic Surgery at King’s College Hospital said: “Cancer is caused by a chain reaction of many different chemicals in the body. Treatment looks to disrupt that chain reaction but how we do this can vary hugely from one person to the next.

“Understanding the chemical make-up of an individual patient will help us understand which patients will respond to treatment. At the moment, only 20% of patients will respond to standard treatment for pancreatic cancer so this new technology will help us predict beforehand which patients are most likely to respond and which will not.

“If we know what treatments will be the most effective before we administer them this gives us a huge advantage to help patients as well as save the NHS money by eliminating spending on treatments that won’t work.

Heaton continued, “It is a hugely promising step forward, not just for patients with pancreatic cancer, but for all people with cancer.”

Dr. Debashis Sarker, Senior Lecturer and Consultant in Medical Oncology at Kings College Hospital, London added: “The PLOS ONE paper shows the critical cancer proteins and pathways that are deregulated for each patient in pancreatic cancer using SysQuant. These differ from patient to patient indicating the need for a personalized approach to each patient’s treatments. Clinical trials should now be designed to compare standard therapy approaches compared to matching aberrant protein pathways with specific targeted therapies.”

Professor Justin Stebbing, Professor of Cancer Medicine and Medical Oncology, Consultant Oncologist, Imperial College London and Imperial College Healthcare NHS Trust said: "This work demonstrates the network of interactions, the fingerprint and signature of phosphorylation events in cancer. It provides an opportunity to study some of the major tumorigenic events in a test tube using the very latest in mass spectrometry-based technologies. This is the way forwards in cell signalling".

Referring to the study, Dr. Ian Pike, Chief Operating Officer at Proteome Sciences, commented: “This study is the first peer-reviewed article using the SysQuant® technology, which in this case identified the common and unique molecular events involved in pancreatic cancer. The results clearly demonstrate the potential to significantly improve the way bespoke treatments can be matched to each individual patient, prior to the administration of any drugs, using already approved medicines.

Dr. Pike continued, “This technology can also be used for the analysis of tissues across a range of different diseases including all other cancers. Furthermore it can be utilized to assess drugs which are in pre-clinical development much more efficiently and cost effectively than is currently possible.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Proteome Sciences Extends its Reach Through Collaboration with MedBiomix Partners
Collaborative network alliance provide advanced data-driven solutions to integrate and make better use of protein expression data.
Wednesday, February 04, 2015
Appointment of Non-Executive Director
Company Board announces the appointment of Mr. Martin Diggle.
Friday, October 17, 2014
Proteome Sciences Signs $2m Contract with Genting TauRx Diagnostic Centre
Contract to develop diagnostic panels to detect Alzheimer’s disease and monitor treatment efficacy.
Tuesday, September 30, 2014
Science and Technology Award for TMT at HUPO World Congress
TMT® chemical tags, distributed through Thermo Scientific, have become the global market leader.
Monday, September 15, 2014
Proteome Sciences Announces £5M Placing
Company conditionally places 17,857,143 new ordinary shares.
Monday, February 24, 2014
Proteome Sciences Appoints Director of Personalised Medicine
Proteome Sciences announces it has appointed Dr Chee Gee See as Director of Personalised Medicine with immediate effect.
Wednesday, October 30, 2013
Proteome Sciences to Develop Cancer Pathway Profiling Assays
New MS3 TMT® mass spectrometry technique to determine relative quantitation of proteins in multiple samples simultaneously.
Monday, June 17, 2013
In-vivo Study Shows CK1D Inhibitors Improve Cognition in Alzheimer’s Model
Proteome Sciences study shows improved cognition using its compounds.
Thursday, January 03, 2013
Stroke Blood Test That Could Increase Use of Most Effective Treatment Five-Fold
UNIGE in collaboration with Proteome Sciences describe a simple blood test.
Friday, September 21, 2012
CK1D Development Update
Proteome Sciences has achieved further milestones in the development of inhibitors of the casein kinase 1 delta (CK1d) target in its Alzheimer's disease portfolio.
Tuesday, August 07, 2012
Stroke Biomarker License to Randox
Stroke biomarker to develop and produce diagnostic tests that could increase by fivefold the number of patients treated for stroke.
Friday, April 06, 2012
Completion of Alzheimer’s Plasma Biomarker Study
The preliminary results demonstrate significant diagnostic and prognostic utilities.
Wednesday, April 04, 2012
Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos