Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Muscle Weakness Seen in Alcoholism Linked to Mitochondrial Repair Issues

Published: Tuesday, April 22, 2014
Last Updated: Tuesday, April 22, 2014
Bookmark and Share
Scientists found evidence that chronic heavy alcohol use affects a gene involved in mitochondrial repair and muscle regeneration.

Muscle weakness from long-term alcoholism may stem from an inability of mitochondria, the powerhouses of cells, to self-repair, according to a study funded by the National Institutes of Health.

"The finding gives insight into why chronic heavy drinking often saps muscle strength and it could also lead to new targets for medication development," said Dr. George Koob, director of the National Institute on Alcohol Abuse and Alcoholism, the NIH institute that funded the study.

The study is available online in the April issue of the Journal of Cell Biology. It was led by Dr. Gyorgy Hajnoczky, M.D., Ph.D., director of Thomas Jefferson University's MitoCare Center, Philadelphia, and professor in the Department of Pathology, Anatomy and Cell Biology.

Mitochondria are cellular structures that generate most of the energy needed by cells. Skeletal muscle constantly relies on mitochondria for power. When mitochondria become damaged, they can repair themselves through a process called mitochondrial fusion -- joining with other mitochondria and exchanging material such as DNA.

Although well known in many other tissues, the current study is the first to show that mitochondria in skeletal muscle are capable of undergoing fusion as a repair mechanism. It had been thought that this type of mitochondrial self-repair was unlikely in the packed fibers of the skeletal muscle cells, as mitochondria have little opportunity to interact in the narrow space between the thread-like structures called myofilaments that make up muscle.

By tagging mitochondria in the skeletal tissue of rats with different colors, the researchers were able to observe the process in action and confirm that mitochondrial fusion occurs in muscle cells. They also identified a key protein in the process, mitofusin 1 (Mfn1) fusion proteins, and showed that chronic alcohol use interferes with the process.

In rats that were given an alcohol diet, Mfn1 levels decreased as much as 50 percent while other fusion proteins were unchanged. This decrease in Mfn1 was coupled with a dramatic decrease in mitochondrial fusion. When Mfn1 returned to normal, mitochondrial fusion did as well.

"That alcohol can have a specific effect on this one gene involved in mitochondrial fusion suggests that other environmental factors may also alter specifically mitochondrial fusion and repair," said Dr. Hajnoczky. He also suggested that identifying the proteins involved in mitochondrial fusion may aid in drug development for alcohol-related muscle weakness.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Mystery of the Tubulin Code Unravelled
NIH study provides a glimpse into the code that controls variety of cell functions.
Wednesday, May 13, 2015
Mouse Study Reveals Potential Clue to Extra Fingers or Toes
NIH-funded study finds that gene appears to regulate protein signals inside the cell.
Tuesday, December 02, 2014
NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.
Wednesday, August 20, 2014
GTEx Project to Expand Functional Studies of Genomic Variation
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.
Wednesday, August 06, 2014
Subcellular Imaging Visualizes Structures of Brain Receptors
The advance opens a new window to study protein interactions in cell membranes in exquisite detail.
Tuesday, August 05, 2014
NIH Funds $24M into Alzheimer’s Disease Genome Research
Scientists will analyze genome sequence data to identify gene risk, protective factors.
Tuesday, July 08, 2014
Gene Linked to Excess Male Hormones in Female Infertility Disorder
Discovery by NIH-supported researchers may lead to diagnostic test, treatment.
Thursday, April 17, 2014
Unexpected Protein Partnership has Implications for Cancer Treatment
Scientists have identified a macrophage that works together in response to cancer drugs to increase inflammation in a way that may alter tumor growth.
Tuesday, April 15, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
Underlying Genetics and Marker For Stroke Discovered
NIH-funded findings point to new potential strategies for disease prevention, treatment.
Friday, March 21, 2014
Speeding Validation of Disease Targets
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.
Tuesday, February 04, 2014
Study Breaks Blood-Brain Barriers to Understanding Alzheimer’s
NIH-funded study suggests brain blood vessel cells may be therapeutic targets for Alzheimer’s disease.
Friday, December 13, 2013
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!