Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Proteomics Discovers Link Between Muscle Damage and Cerebral Malaria

Published: Thursday, April 17, 2014
Last Updated: Monday, April 28, 2014
Bookmark and Share
Study could provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection.

Malaria-related complications remain a major cause of death for children in many parts of the world. Why some children develop these complications while others don't is still not understood.

A multidisciplinary group of scientists and clinicians under the direction of Peter Nilsson (SciLifeLab and KTH, Sweden), Mats Wahlgren (Karolinska Institutet, Sweden), Delmiro Fernandez-Reyes (Brighton & Sussex Medical School, UK) and Olugbemiro Sodeinde (College of Medicine, University of Ibadan, Nigeria), report results of a systematic proteomics approach to the question in PLOS Pathogens. They compared proteins in the blood of uninfected children with those in the blood of infected ones, and also proteins in blood from children with different severe malaria syndromes with proteins in blood from uncomplicated cases.

The researchers analyzed over 1000 proteins in more than 700 children. To make the study more rigorous, the samples were divided into "discovery" and "verification" sets, and only associations that were found in both were reported. There were 41 proteins that could distinguish between malaria patients and uninfected children from the same community. Most of these were components of the inflammatory response.

The researchers also found proteins that were specific to the two most deadly complicated malaria syndromes in children, namely severe malaria anemia and cerebral malaria. For both, combinations of proteins, so-called "signatures", could identify the specific syndrome with high accuracy.

For cerebral malaria, the researchers found that a group of muscle-specific proteins was present in the children's blood, suggesting that muscle cells are damaged. At least some of that damage might be associated with coma, which occurs in cerebral malaria but also in other diseases like meningitis.

The researchers conclude that their study could "provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection between the two most fatal syndromes of childhood malaria" and that muscle-specific proteins in plasma might be "potential indicators of cerebral malaria".

The paper, Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria is published online in PLOS Pathogens and is free to access.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!