Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Proteomics Discovers Link Between Muscle Damage and Cerebral Malaria

Published: Thursday, April 17, 2014
Last Updated: Monday, April 28, 2014
Bookmark and Share
Study could provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection.

Malaria-related complications remain a major cause of death for children in many parts of the world. Why some children develop these complications while others don't is still not understood.

A multidisciplinary group of scientists and clinicians under the direction of Peter Nilsson (SciLifeLab and KTH, Sweden), Mats Wahlgren (Karolinska Institutet, Sweden), Delmiro Fernandez-Reyes (Brighton & Sussex Medical School, UK) and Olugbemiro Sodeinde (College of Medicine, University of Ibadan, Nigeria), report results of a systematic proteomics approach to the question in PLOS Pathogens. They compared proteins in the blood of uninfected children with those in the blood of infected ones, and also proteins in blood from children with different severe malaria syndromes with proteins in blood from uncomplicated cases.

The researchers analyzed over 1000 proteins in more than 700 children. To make the study more rigorous, the samples were divided into "discovery" and "verification" sets, and only associations that were found in both were reported. There were 41 proteins that could distinguish between malaria patients and uninfected children from the same community. Most of these were components of the inflammatory response.

The researchers also found proteins that were specific to the two most deadly complicated malaria syndromes in children, namely severe malaria anemia and cerebral malaria. For both, combinations of proteins, so-called "signatures", could identify the specific syndrome with high accuracy.

For cerebral malaria, the researchers found that a group of muscle-specific proteins was present in the children's blood, suggesting that muscle cells are damaged. At least some of that damage might be associated with coma, which occurs in cerebral malaria but also in other diseases like meningitis.

The researchers conclude that their study could "provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection between the two most fatal syndromes of childhood malaria" and that muscle-specific proteins in plasma might be "potential indicators of cerebral malaria".

The paper, Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria is published online in PLOS Pathogens and is free to access.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
World's Most In-Depth Study to Detect Alzheimer's Disease
A multisite team will see the most thorough and vigorous testing for Alzheimer's ever performed on volunteers.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Pinpointing Key Influenza-Fighting Immune Trigger
Immunologists have identified the protein trigger that recognises influenza virus infection in cells and triggers their death.
Uncovering Constructor Proteins
Scientists have discovered a new bacterial cell wall builder that could be a target for antibiotic development.
Studying Protein, Synapse Interactions
New research identifies, for the first time, the role of certain proteins in synapse opperation and function.
Biomarker Breakthrough Could Improve Parkinson’s Treatment
A new method of tracking Parkinson's progression could aid evaluation of new and experimental treatments to slow or stop the disease.
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!