Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Damaged Protein Could be Key to Premature Ageing

Published: Wednesday, May 14, 2014
Last Updated: Wednesday, May 14, 2014
Bookmark and Share
Scientists have found that the condition of key proteins in the mitochondria -the batteries of cells- could be used to predict, and eventually treat premature ageing. And restricting diet could be one way of making this happen.

The researchers from Newcastle University used interventions, like calorie restriction, a system whereby the cells are deprived of nutrients and which in previous studies has been shown to cause mice to live longer than normal.

These interventions also resulted in more efficient assembly of important mitochondrial proteins into complexes.  In a complex state, proteins work together more effectively, while on their own they generate toxic free radicals, which in turn cause cells to age more rapidly. If a similar mechanism is found in people it could lead to treatments, such as new drugs to improve protein assembly. In a paper published today in the journal Nature Communications the team describe their findings.

Ageing process

Thomas von Zglinicki, Professor of Cellular Gerontology at the Institute for Ageing and Health, Newcastle University, said: “Free radicals have long been linked with the ageing process. Mitochondria generate the energy required to keep our bodies going but they also generate free radicals. How exactly they are involved in ageing is still controversial. Our data shows that quite minor differences can explain large variations in healthy lifespan. Essentially what we have found is that the ageing process goes slower than normal in mice that managed to form mitochondrial protein complexes more efficiently, and that we actually could help them to do so.”

A complex of 96 proteins is at the heart of the mitochondrial power station. Comparing the protein composition in mitochondria from mice that had more or less propensity to long life, the team found the mitochondria from long-lived animals surprisingly had less of these proteins and thus seemed less well suited for energy production than the shorter-living mice.

However, further research showed that assembly of the protein complex was the key: If individual components were more scarce, assembly was perfect, but became more sloppy if more material was around. This then led to less efficient energy production and more release of oxygen free radicals, toxic by-products of mitochondrial metabolism.

Calorie restriction could extend lifespan

Dr Satomi Miwa, joint lead researcher on the team and a specialist on mitochondrial function, said: “These data go a long way to explain how calorie restriction can improve mitochondrial function, extend lifespan and reduce or postpone many age-associated diseases.”

Professor Thomas von Zglinicki added: “We have shown here that complex assembly efficiency correlates to longevity differences in mice that correspond to one or two decades of healthy life in humans. We have also shown that human cells age faster if we corrupt complex assembly. What we now need to do is to see how we can improve the quality of these protein complexes in humans and whether this would extend healthy life.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!