Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Damaged Protein Could be Key to Premature Ageing

Published: Wednesday, May 14, 2014
Last Updated: Wednesday, May 14, 2014
Bookmark and Share
Scientists have found that the condition of key proteins in the mitochondria -the batteries of cells- could be used to predict, and eventually treat premature ageing. And restricting diet could be one way of making this happen.

The researchers from Newcastle University used interventions, like calorie restriction, a system whereby the cells are deprived of nutrients and which in previous studies has been shown to cause mice to live longer than normal.

These interventions also resulted in more efficient assembly of important mitochondrial proteins into complexes.  In a complex state, proteins work together more effectively, while on their own they generate toxic free radicals, which in turn cause cells to age more rapidly. If a similar mechanism is found in people it could lead to treatments, such as new drugs to improve protein assembly. In a paper published today in the journal Nature Communications the team describe their findings.

Ageing process

Thomas von Zglinicki, Professor of Cellular Gerontology at the Institute for Ageing and Health, Newcastle University, said: “Free radicals have long been linked with the ageing process. Mitochondria generate the energy required to keep our bodies going but they also generate free radicals. How exactly they are involved in ageing is still controversial. Our data shows that quite minor differences can explain large variations in healthy lifespan. Essentially what we have found is that the ageing process goes slower than normal in mice that managed to form mitochondrial protein complexes more efficiently, and that we actually could help them to do so.”

A complex of 96 proteins is at the heart of the mitochondrial power station. Comparing the protein composition in mitochondria from mice that had more or less propensity to long life, the team found the mitochondria from long-lived animals surprisingly had less of these proteins and thus seemed less well suited for energy production than the shorter-living mice.

However, further research showed that assembly of the protein complex was the key: If individual components were more scarce, assembly was perfect, but became more sloppy if more material was around. This then led to less efficient energy production and more release of oxygen free radicals, toxic by-products of mitochondrial metabolism.

Calorie restriction could extend lifespan

Dr Satomi Miwa, joint lead researcher on the team and a specialist on mitochondrial function, said: “These data go a long way to explain how calorie restriction can improve mitochondrial function, extend lifespan and reduce or postpone many age-associated diseases.”

Professor Thomas von Zglinicki added: “We have shown here that complex assembly efficiency correlates to longevity differences in mice that correspond to one or two decades of healthy life in humans. We have also shown that human cells age faster if we corrupt complex assembly. What we now need to do is to see how we can improve the quality of these protein complexes in humans and whether this would extend healthy life.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Symmetry is Key to Collagen
Researchers describe how symmetry may be the key to growing collagen fibres outside the body.
Breakthrough in GPCR Understanding
Integral Molecular announces breakthrough in understanding the functionality of GPCRs, the largest class of drug targets in human disease.
Designing Ultrasound Tools with Lego-Like Proteins
Study outlines how ultrasound technology can be used for imaging in conjuction with protein engineering.
Enzyme that Triggers Cell Demise in ALS Identified
Scientists from Harvard have identified a key instigator of nerve cell damage in people with amyotrophic lateral sclerosis (ALS).
Molecular Alarm Clock Wakes Resting Ovules
Study of fruit flies yields discovery of a molecular "alarm clock" that activates resting ovules.
Catching Proteins in the Act
Scientists can now observe light activated processes in proteins through the use of free-electron x-ray lasers.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!