Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Alzheimer’s Disease, Other Conditions Linked to Prion-Like Proteins

Published: Friday, May 23, 2014
Last Updated: Tuesday, May 27, 2014
Bookmark and Share
A new theory about disorders that attack the brain and spinal column has received a significant boost.

The theory, from scientists at Washington University School of Medicine in St. Louis, attributes these disorders to proteins that act like prions, which are copies of a normal protein that have been corrupted in ways that cause diseases. Scientists previously thought that only one particular protein could be corrupted in this fashion, but researchers in the laboratory of Marc Diamond, MD, report that another protein linked to Alzheimer’s disease and many other neurodegenerative conditions also behaves very much like a prion.

The findings appeared online May 22 in Neuron. 

Diamond’s lab found that the protein, known as tau, could be corrupted in different ways, and that these different forms of corruption — known as strains — were linked to distinct forms of damage to the brain.

“If we think of these different tau strains as different pathogens, then we can begin to describe many human disorders linked to tau based on the strains that underlie them,” said senior author Diamond, the David Clayson Professor of Neurology. “This may mean that certain antibodies or drugs, for example, will work better against certain disorders than others.”

The study was led by co-first authors David Sanders and Sarah Kaufman, who are graduate students.

Prions are composed of normal proteins that have folded into an abnormal shape. They aren’t alive, but their effects can be similar to infectious microbes such as bacteria or viruses. Their unusual structure lets prions replicate themselves through a kind of molecular peer pressure: When a prion interacts with identical but normally folded proteins, it can cause these proteins to become prions, which are small aggregates, or clumps, that can spread from cell to cell.

Prions first came to popular attention in the 1990s with the emergence of mad cow disease, a disorder that destroys the brains of cattle. Scientists linked a few cases of a similar condition in people to consumption of meat from infected cows. Researchers eventually determined that the disorder was caused by a distinct strain of prions made by the sickened cattle.

Scientists had suspected that prion-like forms of a protein called alpha-synuclein contribute to Parkinson’s disease and other conditions, and prion-like versions of proteins known as SOD1 and TDP43 may cause amyotrophic lateral sclerosis, commonly known as Lou Gehrig’s disease. 

Scientists also had identified tau clumps in 25 different neurodegenerative disorders, known collectively as tauopathies. This hinted at potential prion-like behavior on the part of tau. In 2009, Diamond’s group found that tau misfolds into several different shapes in a test tube. 

“When we infected a cell with one of these misshapen copies of tau and allowed the cell to reproduce, the daughter cells contained copies of tau misfolded in the same fashion as the parent cell,” Diamond said. “Further, if we extracted the tau from an affected cell, we could reintroduce it to a naïve cell, where it would recreate the same aggregate shape. This proves that each of these differently shaped copies of the tau protein can form stable prion strains, like a virus or a bacteria, that can be passed on indefinitely.”

Diamond used the tau prions made in cells to infect mouse brains, showing that differently shaped strains caused different levels of brain damage. He isolated the prions from the mice, grew them in cell culture, and then infected other mice. Throughout these transfers, each particular prion strain continued to be misfolded in the same shape and to cause damage in the same fashion.

Finally, the researchers examined clumps of tau from the brains of 28 patients after they died. Each of the patients was known to have one of five forms of tauopathy.

“Each disease had a unique tau prion strain or combination of strains associated with it,” he said. “For example, we isolated the same tau prion strain from nearly every patient with Alzheimer’s disease we examined.”

Brain samples from patients with the progressive neurological disorderscorticobasal degeneration and Pick’s disease also typically had the same tau prion strains or mixtures of strains.

Diamond and others now are working to find a way to isolate tau prions non-invasively from individuals for diagnostic purposes. 

Options for stopping prions include monoclonal antibodies, which could label prions for inactivation or immune system attack and removal (described in a paper by Diamond and David Holtzman, MD, Chair of Neurology (Neuron, 2013)). Diamond and others also are developing ways to block tau prion movement between cells and to stop cells from making new copies of the prion proteins.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos