Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Producing DNA and Protein Arrays for Research

Published: Wednesday, May 28, 2014
Last Updated: Wednesday, May 28, 2014
Bookmark and Share
Dr Stoevesandt use GeSiM Nano-Plotter system for the production of various protein arrays.

Analytik report on research work at the Babraham Institute to study protein microarrays using the GeSiM Nano-Plotter system.

Affinomics is an EC FP7 Collaborative Project set up to initiate the generation of a proteome-wide binder collection. To this end, the project integrates the expertise and technologies available in leading European centres in order to create an efficient pipeline for target and binder production, validation and quality control. It is coordinated by Dr Mike Taussig of the Protein Technology Group at the Babraham Institute near Cambridge.

He is a co-inventor of the Ribosome Display technique as well as the PISA and DAPA methods for production of protein arrays. Dr Oda Stoevesandt and Dr Ronny Schmidt are post-doctoral scientists with experience in protein array technology and optimization who work on both conventional protein arrays and the DAPA system.

Dr Stoevesandt describes their research work and how they came to choose the GeSiM non-contact sub-nanolitre dispensing system from Analytik for the production of various protein arrays. “We are interested in making and using protein microarrays. For making them, we have two options: The obvious one - spotting proteins. Then there is the special one - spotting arrays of protein coding DNA, and then using cell-free protein expression to create the corresponding protein array. The latter is a proprietary technology that we have developed; we call it DAPA – DNA array to protein array. We do all our spotting for either array technology with a GeSiM Nano-Plotter NP2.1. We apply the protein arrays mainly for specificity screening of antibodies, and for characterizing the targets of autoantibodies in autoimmune sera. We do this both academically (http://www.affinomics.org), as well as in our company Cambridge Protein Arrays Ltd. (www.cambridgeproteinarrays.com).”

Continuing, Dr Stoevesandt talks of the use of the Nano-Plotter. “We liked the complete control over the spotting layout that the GeSiM software allows, which is particularly important for our DAPA DNA template arrays. Being a non-contact printer, the Nano-Plotter also allows us to control the dispensed volume, at least in terms of multiples of the unit droplet. This is very handy for technology development to optimize the deposited amount of material for a particular application. We also liked the compact size and affordability of the GeSiM Nano-Plotter.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Disordered Protein 'Shape Shifts' to Avoid Crowding
Study suggests disordered protein escapes from the cell membrane when it runs out of space.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
"Pac-man Protein" May Aid the Fight Against Cancer
Scientists at the University of Sheffield have identified a protein which causes cells to eat their dying neighbours, helping to prevent inflammation – something which is vital in the fight to stop cancer spreading.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!