Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Producing DNA and Protein Arrays for Research

Published: Wednesday, May 28, 2014
Last Updated: Wednesday, May 28, 2014
Bookmark and Share
Dr Stoevesandt use GeSiM Nano-Plotter system for the production of various protein arrays.

Analytik report on research work at the Babraham Institute to study protein microarrays using the GeSiM Nano-Plotter system.

Affinomics is an EC FP7 Collaborative Project set up to initiate the generation of a proteome-wide binder collection. To this end, the project integrates the expertise and technologies available in leading European centres in order to create an efficient pipeline for target and binder production, validation and quality control. It is coordinated by Dr Mike Taussig of the Protein Technology Group at the Babraham Institute near Cambridge.

He is a co-inventor of the Ribosome Display technique as well as the PISA and DAPA methods for production of protein arrays. Dr Oda Stoevesandt and Dr Ronny Schmidt are post-doctoral scientists with experience in protein array technology and optimization who work on both conventional protein arrays and the DAPA system.

Dr Stoevesandt describes their research work and how they came to choose the GeSiM non-contact sub-nanolitre dispensing system from Analytik for the production of various protein arrays. “We are interested in making and using protein microarrays. For making them, we have two options: The obvious one - spotting proteins. Then there is the special one - spotting arrays of protein coding DNA, and then using cell-free protein expression to create the corresponding protein array. The latter is a proprietary technology that we have developed; we call it DAPA – DNA array to protein array. We do all our spotting for either array technology with a GeSiM Nano-Plotter NP2.1. We apply the protein arrays mainly for specificity screening of antibodies, and for characterizing the targets of autoantibodies in autoimmune sera. We do this both academically (http://www.affinomics.org), as well as in our company Cambridge Protein Arrays Ltd. (www.cambridgeproteinarrays.com).”

Continuing, Dr Stoevesandt talks of the use of the Nano-Plotter. “We liked the complete control over the spotting layout that the GeSiM software allows, which is particularly important for our DAPA DNA template arrays. Being a non-contact printer, the Nano-Plotter also allows us to control the dispensed volume, at least in terms of multiples of the unit droplet. This is very handy for technology development to optimize the deposited amount of material for a particular application. We also liked the compact size and affordability of the GeSiM Nano-Plotter.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
HIV Particles Used to Trap Intact Mammalian Protein Complexes
Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!