Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sneaky Bacteria Change Key Protein’s Shape to Escape Detection

Published: Wednesday, May 28, 2014
Last Updated: Wednesday, May 28, 2014
Bookmark and Share
Researchers believe that this deeper understanding could help lead to new treatments for bacterial diseases.

Every once in a while in the U.S., bacterial meningitis seems to crop up out of nowhere, claiming a young life. Part of the disease’s danger is the ability of the bacteria to evade the body’s immune system, but scientists are now figuring out how the pathogen hides in plain sight. Their findings, which could help defeat these bacteria and others like it, appear in the Journal of the American Chemical Society.

Linda Columbus and colleagues explain that the bacteria Neisseria meningitidis, one cause of meningitis, and its cousin Neisseria gonorrhoeae, which is responsible for gonorrhea, have key-like proteins that allow them to enter human cells and do their damage. Gonorrhea can be cured, though one type of the responsible bacteria has reached “superbug” status, becoming resistant to known drugs. If meningitis is not treated immediately with antibiotics, it can cause severe disability and death. In a search for new ways to treat these diseases, scientists are looking more closely at how the bacteria sneak around in the body undetected. When someone gets an infection, specific proteins — called antigens — that stud the pathogen’s outer layer usually raise an alarm, and the body’s immune system goes on the attack. But these two kinds of Neisseria bacteria can elude the body’s look-out cells, and Columbus’ team wanted to know how.

They combined two approaches to figure out the architecture of one of the bacteria’s outer proteins that help it gain entry into human cells. They found that the protein’s outer loops that jostle against each other, causing their structure to constantly change. This shape-shifting makes for a kind of camouflage that hides them from the body’s sentinels, at the same time preserving its ability to bind to and enter a person’s cells. This deeper understanding could help lead to new treatments for bacterial diseases, the scientists state.

The article “Structure of the Neisserial Outer Membrane Protein Opa60: Loop Flexibility Essential to Receptor Recognition and Bacterial Engulfment” is published in the Journal of the American Chemical Society and is  available online. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Cell Cargo Ships in Near Future?
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Liquid Biopsy Predicts Colon Cancer Recurrence
Scientists have used a genetic test that spots bits of cancer-related DNA circulating in the blood to accurately predict the likelihood of the disease’s return in some — but not all — of a small group of patients with early-stage colon cancer.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!