Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cellular Force That Drives Allergy and Asthma Can be Blocked by Interferon

Published: Friday, June 20, 2014
Last Updated: Friday, June 20, 2014
Bookmark and Share
Type I interferons block the development of allergy- and asthma-driving Th2 cells.

A mechanism that could underlie the development of cells that drive asthma and allergies has been uncovered by immunology researchers at UT Southwestern Medical Center.

Asthma and allergies are both driven by an inappropriate activation of the immune system, primarily a subtype of white blood cells known as T helper 2 cells, or Th2 cells. These cells are normally responsible for defense against parasites, but are also the main culprits behind the symptoms of asthma and allergies.

Dr. David Farrar, Associate Professor of Immunology and Molecular Biology at UT Southwestern, and his team found that the antiviral molecules known as type I interferons (IFNs) block the development of these allergy- and asthma-driving Th2 cells.

“The fact that interferon could stop the activation of these harmful cells was of particular interest because interferons are already approved by the Food and Drug Administration for the treatment of other diseases, such as multiple sclerosis and hepatitis,” said Dr. Farrar, who holds the J. Wayne Streilein, M.D. Professorship in Immunology.

The work, published in the Journal of Immunology, could eventually give rise to new therapies.

To demonstrate the prevalence of asthma, in the United States about 13 percent of adults - nearly 30 million people - have received a diagnosis of asthma. This frequency compares to 11 percent who have been diagnosed with heart disease and 8 percent who have had any form of cancer, according to the Centers for Disease Control and Prevention. Asthma is reported more often among women than men, among Caucasians, and in families with limited economic resources. Allergies, too, are prevalent, with more than 17.5 million people suffering from hay fever in the U.S.

The development of Th2 cells is stimulated by a particular immune molecule that triggers the production of a protein called GATA3. Frequently referred to as the master regulator of Th2 cell development, GATA3 turns on the genes that distinguish Th2 cells from other cell types, including other T cells.

Dr. Farrar’s group found that type I IFNs block this process by targeting a part of the GATA3 gene known as exon 1a and turning it off, thereby inhibiting the production of the GATA3 protein and, consequently, the development of Th2 cells.

“Targeting this pathway may lead to permanent tolerance of these cells to allergens,” said Dr. Farrar. “We are currently pursuing studies that may lead to clinical trials that will determine whether interferon can be used to treat allergic asthma patients.”

Dr. Farrar’s lab studies how a collective group of proteins called cytokines regulate immune responses. Type 1 interferon, the first immune cytokine discovered, is one of the very first lines of defense against viruses. The protein was initially identified based on its ability to inhibit influenza virus. Since then, scientists have discovered that almost any cell in the body can secrete interferon if it becomes infected with certain viruses, and that most cells can respond to interferon.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UTSW Finds Key Step in Brain Cell Death During Stroke
Researchers at UTSW have found novel function for old protein in work that could lead to new ways to protect brain from stroke damage.
Saturday, October 08, 2016
Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
The team of researchers grew crystals of nicotinic receptors, a breakthrough that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects.
Tuesday, October 04, 2016
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
Researchers Find a Small Protein that Plays a Big Role in Heart Muscle Contraction
New protein, DWORF, stimulates a calcium-ion pump that controls muscle contraction.
Friday, January 15, 2016
UTSW-led Study Establishes Biomarkers to Help Diagnose, Treat Psychosis
In this study, the Bipolar-Schizophrenia Network on Intermediate Phenotypes identified three neurobiologically distinct biotypes.
Saturday, December 12, 2015
Physiologists Uncover a New Code at the Heart of Biology
New “code” - the speed limit of assembly - dictate the ultimate function of a given protein.
Thursday, September 24, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Peptides vs. Superbugs
Scientists successfully develop a shuttle system made of liquid-crystalline nanomaterials that protect peptites.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Immune Approach Targets Humans Instead of Bacteria
Scientists show for the first time how bacterial superantigen toxins work, and how short peptides can block them and save lives.
Could 2D Mass Spec Breakthrough Lead to Medical Revolution?
Pharmaceutical research could be quicker and more precise, thanks to an innovative breakthrough in 2D mass spec from the University of Warwick.
Less is More in Ribosome Assembly
Research uncovers genetic "program" that allows for ribosome formation with a limited supply of magnesium.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos