Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

FEI Announces Sale of Complete Correlative Workflow to New Research Center

Published: Saturday, June 28, 2014
Last Updated: Saturday, June 28, 2014
Bookmark and Share
University of Maastricht adds complete correlative workflow from FEI to enable greater insight into the 3D form of cellular proteins, which may facilitate the development of more effective disease treatment and prevention.

FEI has announced the sale of a complete correlative workflow to the University of Maastricht. The systems will be installed at the University’s Institute of Nanoscopy, a new research facility that will use the high-resolution microscopes to understand the working mechanisms of protein complexes in an effort to develop new and improved treatment and prevention for disease, such as cancer and tuberculosis.

“Our ultimate goal is to image biological nano-machines and their mode of action at the macromolecular-scale by pushing the current limits of visual proteomics and nanotechnologies,” states Peter Peters, university professor of Nanobiology at the Faculty of Health, Medicine and Life Sciences, and head of the Institute of Nanoscopy. “Cryo-electron microscopy is the only way to study cellular processes close to the in vivo situation. In order to do so, a full workflow is needed, from live cell imaging with fluorescent markers through cryo-fixation to preserve the structure, and finally, using high-resolution cryo-electron tomography to visualize three-dimensional structures down to the nanometer scale. FEI is the only company that can deliver this complete workflow from start to finish.”

The complete workflow delivered to the University of Maastricht starts with live cell imaging using CorrSight™, an advanced light microscope that is designed specifically for use in correlative experiments and enables researchers to image live cell dynamics and, when a targeted event is observed, quickly fix those cells for electron microscopy (EM). FEI’s MAPS™ software tracks the target position and coordinates and provides a common operating interface between the different tools across the entire workflow.

The sample, along with its coordinates, is then transferred to the Scios DualBeam™ (focused ion beam/scanning electron microscope) system, which thins the identified areas of interest down to the appropriate thickness of 100-200 nm while maintaining cryogenic conditions. The thinned sample is transferred to the Tecnai Arctica™ transmission electron microscope (TEM) for high-resolution imaging and analysis. The Arctica is specially-designed for automated, high-throughput cryo-tomography, which acquires a sequence of images from different perspectives to reconstruct a 3D model of the target.

According to Peter Fruhstorfer, FEI’s vice president and general manager of Life Sciences, “The complete workflow provides a seamless way to study biological cells and processes. It reduces the tedious manual work and improves reproducibility of the data.” He adds, “We have a long-standing relationship with Dr. Peters, who is a leading and well-known researcher in his field. We look forward to working with him to further expand the use of cryo-EM in medical research.”

The research team at the University’s Institute of Nanoscopy will focus on revealing the 3D structure of a large complex called ‘type VII secretion system’ present in the cell wall of Mycobacterium tuberculosis and the most important virulence factor. This knowledge may contribute to improving the vaccine presently used against tuberculosis (TB).

This research is based on Dr. Peters’ findings of how the bacteria that cause TB behave within cells, which was published in Cell in 2007. The Institute also aims to develop greater insight into the working of the immune system, which may potentially lead to an immune response against cancer cells in the human body. In addition, the team will continue to work on improving sample preparation for cryo-EM.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tsinghua University Selects FEI’s Titan Krios Cryo-Electron Microscope
Investment in Titan Krios underscores Tsinghua University’s commitment to leadership in structural biology.
Wednesday, August 26, 2009
UCLA’s New Center for NanoBiology Begins Sub-Nanometer Molecular Imaging with FEI Titan Krios Microscope
FEI’s automated molecular imaging solution will be used to understand the causes of disease.
Friday, August 07, 2009
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!