Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Tool to Study Critical Protein Interaction in Cancer Research

Published: Thursday, July 03, 2014
Last Updated: Thursday, July 03, 2014
Bookmark and Share
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.

A recent study by scientists from the Agency for Science, Technology and Research (A*STAR) is the first to report on the use of fluorescent molecular rotors for cancer drug development. The study was published on 30 April as the cover article in the Journal of The American Chemical Society (JACS).

On the cellular level, cancer is the uncontrolled growth of cells containing damaged or mutated DNA which could result in tumours. p53 is a ‘tumour suppressor protein’ because it functions as the body’s defence against cancer by binding to regulatory sites on the genome and trigger repair mechanisms to the DNA. Alternatively, p53 is also known to initiate a process of apoptosis or programmed cell death.

MDM2 protein is a negative regulator of p53. This means that a high level of MDM2 inhibits the activity of p53 by binding to it and breaking it down; on the other hand, when mutated or damaged DNA is detected, the level of MDM2 falls and allows p53 to initiate DNA repair. The breakdown of the regulatory abilities of MDM2 and p53 will lead to tumours. For instance, an overexpression of MDM2 has been observed in soft tissue sarcomas, gliomas, lymphomas and breast cancer. The study of MDM2-p53 interaction is, therefore, important in cancer research.

In this study, A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells. They found that the fluorescent molecular rotor fluoresces or “lights up” when it is coupled with a short peptide fragment of the MDM2.

Armed with this finding, the scientists screened a library of small molecule fragments for candidates that may potentially disrupt p53-MDM2 binding. They detected a total of 15 hits – eight were validated by an existing method known as fluorescence polarisation and found extra seven which were missed out.

Dr Teo Yin Nah, Research Fellow at A*STAR’s Molecular Engineering Laboratory, said: “Researchers have used molecular rotors as viscosity sensor probes in live cells. This is the first time we have proved that molecular rotors can be used in a different way to understanding molecular interactions that causes cancer. Scientists now have another tool in their arsenal to further our understanding of the MDM2-p53 interaction.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Missing Protein Explains Link Between Obesity and Diabetes
A*STAR scientists pioneered a molecular connection between the two health conditions.
Tuesday, July 01, 2014
A*STAR Scientists Discover Novel Hormone Essential for Heart Development
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.
Friday, December 06, 2013
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
A*STAR Scientists Make Discovery of Cell Nucleus Structure Crucial to Understanding Diseases
Genes relocated from their correct position in the nucleus cause them to malfunction and this may lead to the heart, blood vessels and muscles breaking down.
Friday, February 08, 2013
A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer
This discovery can potentially prevent the progression and relapse of deadly brain tumours.
Tuesday, January 15, 2013
Singapore Scientists Identify New Biomarker for Cancer in Bone Marrow
This discovery may potentially cure patients of multiple myeloma.
Friday, December 14, 2012
Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection
A*STAR's SIgN have made great strides in the battle against the infectious disease.
Monday, September 24, 2012
Discovery of the Cellular Origin of Cervical Cancer
A team of scientists have identified a unique set of cells in the cervix that are the cause of HPV related cervical cancers.
Tuesday, June 12, 2012
Scientists Uncover Exciting Lead into Premature Ageing and Heart Disease
Scientists increase life span of mice by reducing levels of SUN1 protein.
Tuesday, May 01, 2012
Scientists Discover Key Component in the Mother's Egg Critical for Survival of Newly Formed Embryo
Study finds out that a protein called TRIM28 preserves 'epigenetic marks' on a specific set of genes.
Friday, March 30, 2012
Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!