Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epigenetic Study Bolsters Alzheimer's Understanding

Published: Monday, August 18, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
The current study found that chemical modifications to DNA within the ANK1 gene are strongly associated with measures of neuropathology in the brain.

A team of researchers at the Institute of Psychiatry, King’s College London and the University of Exeter has uncovered some of the strongest evidence yet that epigenetic changes in the brain play a role in Alzheimer’s disease. 

Epigenetic changes affect the expression or activity of genes without changing the underlying DNA sequence and are believed to be one mechanism by which the environment can interact with the genome. Importantly, epigenetic changes are potentially reversible and may therefore provide targets for the development of new therapies.

Globally, more than 26 million people are currently affected by Alzheimer’s disease. As this number grows in line with an increasingly aging population, the need to identify new disease mechanisms is more important than ever. Post-mortem examinations have revealed much about how Alzheimer’s damages the brain, with some regions, such as the entorhinal cortex, being particularly susceptible, while others, such as the cerebellum, remain virtually unscathed. However, little is yet known about how and why the disease develops in specific brain regions. 

The study, published in Nature Neuroscience, found that people with more Alzheimer’s disease-related neuropathology in their brains had higher levels of DNA modifications within the ANK1 gene. The finding was particularly strong in the entorhinal cortex, and also detected in other cortical regions affected by the disease. In contrast, no significant changes were observed in less affected brain regions or blood.

Professor Jonathan Mill, from the Psychiatric Epigenetics Group at the MRC Social, Genetic and Developmental Psychiatry Centre at King’s College London, and the University of Exeter Medical School, who headed the study, said: “This is the strongest evidence yet to suggest that epigenetic changes in the brain occur in Alzheimer’s disease, and offers potential hope for understanding the mechanisms involved in the onset of dementia. We don’t yet know why these changes occur – it’s possible that they are involved in disease onset, but they may also reflect changes induced by the disease itself.”

Dr Katie Lunnon, first author on the study, from the University of Exeter Medical School, added: “It’s intriguing that we find changes specifically in the regions of the brain involved in Alzheimer’s disease. Future studies will focus on isolating different cell-types from the brain to see whether these changes are neuron-specific.”

Dr Simon Ridley, Head of Research at Alzheimer’s Research UK, the UK’s leading dementia research charity, who also provided funding for the study said: “We know that changes to the DNA code of certain genes are associated with an increased risk of developing Alzheimer’s disease. Investigating how epigenetic changes influence genes in Alzheimer’s is still a relatively new area of study. The importance of understanding this area of research is highlighted by the fact that epigenetic changes have been associated with development of other diseases, including cancer. 

“This innovative research has discovered a potential new mechanism involved in Alzheimer’s by linking the ANK1 gene to the disease. We will be interested to see further research into the role of ANK1 in Alzheimer’s and whether other epigenetic changes may be involved in the disease."

The international research team used cutting-edge technology to examine brain tissue from different areas of the brain across three cohorts - the MRC London Brain Bank for Neurodegenerative Disease at King's, the Oxford Thomas Willis Brain Bank, and the Mount Sinai Alzheimer's Disease and Schizophrenia Brain Bank. They analysed three cortical regions, cerebellum, and blood obtained from several hundred individuals representing the spectrum of disease; from those with no evidence of dementia and neurodegeneration, through to patients with very advanced disease. 

The research was primarily funded by the National Institutes of Health (NIH), as part of its Epigenomics Roadmap Initiative.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Immunotherapy Trial for Type 1 Diabetes
The search for a treatment for Type 1 diabetes (T1D) - which affects over 400,000 people in the UK – will be stepped up with the start of a new phase one clinical trial at Guy’s Hospital in London.
Wednesday, March 30, 2016
Significant Step Towards Blood Test for Alzheimer's
Scientists have identified a set of 10 proteins in the blood which can predict the onset of Alzheimer’s, marking a significant step towards developing a blood test for the disease.
Tuesday, July 08, 2014
Scientific News
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Mimicking Evolution to Create Novel Proteins
A study by researchers in the Kuhlman lab offers a new route to design the 'cellular machines' needed to understand and battle diseases.
Can Gender Play A Role In Determining Cancer Treatment Choices?
MD Anderson study reveals “sex-biased” gene signatures in review of 13 cancer types.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
HIV Particles Used to Trap Intact Mammalian Protein Complexes
Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!