Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

MU Researchers Discover Protein's Ability To Inhibit HIV Release

Published: Wednesday, August 27, 2014
Last Updated: Wednesday, August 27, 2014
Bookmark and Share
TIM-family proteins have the ability to block the release of HIV and other viruses.

A family of proteins that promotes virus entry into cells also has the ability to block the release of HIV and other viruses, University of Missouri researchers have found.

“This is a surprising finding that provides new insights into our understanding of not only HIV infection, but also that of Ebola and other viruses,” said Shan-Lu Liu, MD, PhD, associate professor in the MU School of Medicine’s Department of Molecular Microbiology and Immunology.

The study was recently published in the Proceedings of the National Academy of Sciences. Liu, the corresponding author of the study, is also an investigator with the Christopher S. Bond Life Sciences Center at MU.

According to estimates from the Centers for Disease Control and Prevention, more than one million Americans currently are living with HIV infection. AIDS, which stands for acquired immunodeficiency syndrome, is a condition characterized by progressive failure of the immune system. It is caused by the human immunodeficiency virus type 1 (HIV-1).

When HIV-1 or any virus infects a cell, it replicates and spreads to other cells. One type of cellular protein — T cell immunoglobulin and mucin domain, or TIM-1 — has previously been shown to promote entry of some highly pathogenic viruses into host cells. Now, the MU researchers have found that the same protein possesses a unique ability to block the release of HIV-1 and Ebola virus.

“This study shows that TIM proteins keep viral particles from being released by the infected cell and instead keep them tethered to the cell surface,” said Gordon Freeman, PhD, an associate professor of medicine with Harvard Medical School’s Dana-Farber Cancer Institute, who was not affiliated with the study. “This is true for several important enveloped viruses including HIV and Ebola. We may be able to use this insight to slow the production of these viruses.”

Under the supervision of Liu, Minghua Li, a graduate student in the MU Pathobiology Area Program, performed a series of experiments that revealed the protein’s ability to inhibit HIV-1 release, resulting in diminished viral production and replication.

HIV-1 attacks cells that are vital to the body’s immune system, such as T cells. These white blood cells play an important role in the body’s response to infection, but HIV-1 disrupts the cells’ ability to fight back against infection. When the virus enters a host cell, it infects the cell and replicates, producing viral particles that spread to and infect other cells. The researchers found that as the viral particles attempt to bud from, or leave, the infected cell, the TIM-family proteins located on the surface of the cell can attach to lipids on the surface of the viral particle.

These lipids – known as phosphatidylserine (PS) — are normally present on the inner side of the cellular membrane but can be exposed to the outer side upon viral infection. When the TIM-family proteins come in contact with PS, the viral particle becomes attached to the host cell, keeping the particle from being released from the cell. Because TIM-family proteins and PS are present on the surface of the cell and the viral particle, the viral particles get stuck to one another, forming a network of viral particles that accumulate on the surface of the host cell, rather than being released to infect other cells.

By using molecular, biochemical and electron microscopic approaches, the researchers observed the TIM and PS interactions in human cells. The next step is for the researchers to study the biological significance of TIM-family proteins in animals and patients and to determine the fate of the infected cell once it accumulates a buildup of viral particles.

“We are not at the point to draw a conclusion as to whether this is a positive or a negative factor,” Liu said. “However, this discovery furthers our ultimate goal of understanding the biology of TIM-family proteins and potentially developing applications for future antivirus therapies.”

The study, “TIM-Family Proteins Inhibit HIV-1 Release,” is supported in part by the National Institutes of Health and the University of Missouri. In addition to Liu and Li, researchers include Eric Freed, PhD, senior investigator with the National Cancer Institute (NCI) HIV Drug Resistance Program; Sherimay Ablan, biologist with the NCI HIV Drug Resistance Program; Marc Johnson, PhD, associate professor in the MU Department of Molecular Microbiology and Immunology; Chunhui Miao and Matthew Fuller, graduate students in the MU Department of Molecular Microbiology and Immunology; Yi-Min Zheng, MD, MS, senior research specialist with the Christopher S. Bond Life Sciences Center at MU; Paul Rennert, PhD, founder and principal of SugarCone Biotech LLC in Holliston, Massachusetts; and Wendy Maury, PhD, professor of microbiology at the University of Iowa.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover A New Mechanism of Proteins to Block HIV
Certain IFITM proteins block and inhibit cell-to-cell transmission of HIV.
Tuesday, September 29, 2015
Key Component in Protein that Causes Cystic Fibrosis Identified
Scientists hope that this finding may lay the foundations for the development of new medications and improved therapies.
Thursday, May 21, 2015
Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos