Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


Gemini EM Fluorescence Microplate Reader

Product Description
The Gemini™ EM Fluorescence Microplate Reader exemplifies flexibility for fluorescence assays. Reading 6 to 384-well microplates, the optical design of the instrument can be switched from top to bottom read modes for improved sensitivity to solutions and cell-based assays. Dual monochromators for variable wavelength selection between 250 nm and 850 nm eliminate the need for searching out the right pair of excitation and emission filters and wavelength scanning across a range of wavelengths in increments as small as 1 nm can be used to optimize assay parameters. Up to 4 wavelength pairs can be read for endpoint and kinetic measurements, and the Gemini EM Microplate Reader offers well scanning to report a fluorescent measurement from a single point in the center of a microplate well to multiple points across a tissue culture well.

Unlike most fluorescence readers that may saturate out with signal intensities over 3 orders of magnitude, the patented AutoPMT Optimization System of the Gemini EM Microplate Reader adjusts the fluorescence detector to each sample well's concentration and normalizes the raw data, extending the dynamic range of assays so that low and high signals can be captured from the same plate. This calibration against an internal standard provides an additional benefit in being able to confidently compare relative fluorescence units (RFUs) of individual samples across plates and readers.

The Gemini EM Microplate Reader is supplied with SoftMax® Pro Data Acquisition & Analysis Software, Molecular Devices' industry leading all-in-one data acquisition and analysis software. Additionally, the Gemini EM Microplate Reader can be seamlessly integrated with the StakMax® Microplate Handling System through the SoftMax Pro Software.
Product Gemini EM Fluorescence Microplate Reader
Company Molecular Devices Product Directory
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices Product Directory
1311 Orleans Drive Sunnyvale, CA 94089-11361 United States

Tel: 1-800-635-5577
Fax: 1-408-548-6439
Email: om@moldev.com



Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Grant to Fund Million Peaks Project
The European Research Council (ERC) has awarded a prestigious Advanced Grant to Prof. Peter Schoenmakers, Prof. Albert Polman and Prof. Huib Bakker, all three of whom work at the University of Amsterdam (UvA).
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Scroll Up
Scroll Down

SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!