Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Products>This Product

SpectraMax® i3: When is the last time you inspected your cells and ran an assay on the same instrument?

Product Image
Product Description

The SpectraMax® i3 is Molecular Devices latest multi-mode microplate reader which delivers several applications including; Ultra-Violet to visible absorbance detection, fluorescence intensity and multi-colour luminescence. There is the option to add user-installable cartridges as your research needs evolve including HTRF®, AlphaScreen® and Fluorescence Polarisation assays as well as cellular imaging, (with the SpectraMax® MiniMax™) increasing the instruments flexibility. This highly sensitive instrument accommodates the budget and throughput needs of both small and large laboratories alike.

The SpectraMax® i3 Platform's base system features an integrated optical system which enables both top and bottom reads for 6-, 384- well microplates and launches with three broad detection modes: luminescence, absorbance, and fluorescence. The patented user-exchangeable cartridge design expands the system's detection capability making it highly versatile, and able to offer application options far exceeding those of standard readers.

Using a combination of a flash lamp for spectral flexibility and light emitting diodes (LEDs) for excitation power, Molecular Devices has developed the patent-pending Spectral Fusion™ Illumination to deliver wavelength flexibility whilst maximizing signal strength, ultimately increasing overall performance.

Data from the SpectraMax® i3 System is captured and analysed using Molecular Devices' proprietary, industry-leading SoftMax® Pro Software. The newly updated interface and Spectral Optimization Wizard simplifies the workflow and provides powerful data analysis features, eliminating the need for training on additional software. The SpectraMax® i3 System is also available for use in GMP and GLP labs when used with the SoftMax® Pro 6.3 GxP Microplate Data Compliance Software. This new user interface and powerful data analysis package simplifies the set-up of the SpectraMax® i3 platform, getting you to your results much faster!

SpectraMax® MiniMax™ Imaging Cytometer

When is the last time you inspected your cells and ran an assay on the same instrument? With the user-upgradable imaging cytometer option, turn your SpectraMax® i3 microplate reader into a cellular imager and unlock a new world of applications. 

The MiniMax™ Imaging Cytometer module adds first of its kind cellular imaging to a multi-mode detection platform, enabling fluorescence and bright field cellular imaging. Combining cellular imaging with microplate-based applications offers new ways for scientists to compress their workflows and increase efficiency. 

Key benefits include:

User Upgradeability:
Expand the 3-mode base system with additional application cartridges for FP, HTRF®, AlphaScreen® assays and cellular imaging. These user-installable cartridges prevent the need for system down time or service engineers. 

SpectraMax® MiniMax™ Imaging Cytometer:
Simplifies complex imaging workflows by visualising cell morphology changes on top of well-based intensity readings

Spectral Fusion™ Illumination:
Delivers high-powered full spectrum light source for increased fluorescence performance across the entire excitation range

Expanded Dynamic Range:
Sophisticated engineering delivers optimal sensitivity and maximises signal range 

Imagine the SpectraMax® i3 in your lab today and begin to realise what this system will bring to your research!

For more information on the SpectraMax® i3 and SpectraMax® MiniMax™ and to see a video of them in action CLICK HERE

Product SpectraMax® i3: When is the last time you inspected your cells and ran an assay on the same instrument?
Company Molecular Devices
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices
660 - 665 Eskdale Road Winnersh Triangle Wokingham Berkshire RG41 5TS

Tel: +44-118-944-8000
Fax: +44-118-944-8001

Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Tracking How Herpes Simplex Virus Moves Through Cells
In a recent study, Derek Walsh, PhD, associate professor of Microbiology-Immunology, and his team showed how the herpes simplex virus (HSV) exploits microtubule plus-end tracking proteins to initiate transport and infection in human cells.
Scroll Up
Scroll Down

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos